# Observational Astronomy - Lecture 11 Cosmology - I

#### Craig Lage

New York University - Department of Physics

craig.lage@nyu.edu

April 27, 2014

- Cosmology is the study of the origin, evolution, and eventual fate of the universe.
- The Universe is commonly defined as the totality of existence, including planets, stars, galaxies, the contents of intergalactic space, the smallest subatomic particles, and all matter and energy.

# Key Ideas Needed to Understand Cosmology

Doppler Shift

#### Oistance Measures

- Parallax
- Standard Candles
- Cepheid Variables
- Type 1A Supernovae
- Cosmic Distance Ladder
- Iubble's Law and the Expansion of the Universe
- Gravitational Lensing
- Oark Matter

## Sound and the Doppler Shift



• When moving toward you, you hear a higher frequency.

• When moving away from you, you hear a lower frequency.

# Light and the Doppler Shift



- When moving toward you, light is shifted toward the blue (higher frequency, shorter wavelength).
- When moving away from you, light is shifted toward the red (lower frequency, longer wavelength).

# Doppler Shift of Spectra



- When moving toward you, light is shifted toward the blue (higher frequency, shorter wavelength).
- When moving away from you, light is shifted toward the red (lower frequency, longer wavelength).

# Calculating Velocities from the Doppler Shift

• Since most objects are moving away from us, astronomers use the symbol z to denote the redshift.

$$z = \frac{\lambda observed - \lambda emitted}{\lambda emitted} = \frac{\Delta \lambda}{\lambda emitted}$$

• The redshift and the velocity of recession are related by:

$$1+z=\sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}$$

Solving for v:

$$\frac{v}{c} = \frac{(1+z)^2 - 1}{(1+z)^2 + 1}$$

• For small v:

$$\frac{v}{c} = z$$

# Redshift Example - Sloan Digital Sky Survey





- Measured wavelength of  $H_{\alpha}$  line = 6715.835 Angstroms.
- Lab wavelength of  $H_{\alpha}$  line = 6562.81 Angstroms.
- $\Delta \lambda = 6715.83 6562.81 = 153.0$  Angstroms.
- $z = \Delta \lambda / \lambda = 153.0/6562.81 = 0.023$
- V = 0.023 \* c = 0.023 \* 299,792 km/sec = 6895 km/sec

## Standard Candles



If we know intrinsically how bright something is, then by measuring its apparent brightness, we can calculate how far away it is.

# **Cepheid Variables**



- Cepheid Variables are unstable stars that pulsate.
- Their brightness varies in a regular fashion.

# Using Cepheids to Measure Distance - I



Period - Luminosity relation for Cepheids in the LMC.



A Cepheid in M100.

# Using Cepheids to Measure Distance - II

- All of the stars in the Large Magellanic Cloud (LMC) are about the same distance from us.
- Since the period is correlated to the apparent magnitude, we know that the period is correlated to the absolute magnitude. Recall:

$$m = M - 5 + 5\log_{10}(D)$$

- By measuring the period of the oscillation and the apparent magnitude, we can calculate the distance.
- This assumes that we know how far away the LMC is.
- Measuring the distance to the LMC is an important part of the *Cosmic Distance Ladder*.

# Type 1A Supernovae as Standard Candles



- Type 1A supernovae are exploding white dwarf stars.
- They all have a similar intrinsic peak brightness.
- We can use them as standard candles.

## Hubble's Law and the Expansion of the Universe



Today's best value - 68 km/sec/Mpc

#### Calculating Distance from Hubble's Law

- Suppose a galaxy is measured to have a redshift z = 0.01.
- Since this is a small redshift, we can write:

$$V = z \times c = 0.01 \times 3.0 \times 10^5 \ km/sec = 3,000 \ km/sec$$

• Now we apply Hubble's Law, assuming a Hubble constant of 70 km/sec/Mpc. The distance of the galaxy is just the speed of recession divided by the Hubble constant:

$$D = \frac{3,000\frac{km}{sec}}{70\frac{km}{sec\,Mpc}} = 43Mpc$$

• You can compare this to the graph of Hubble's law and see that they agree.

# The Cosmic Distance Ladder



We use a variety of techniques to calculate distances.

- Key points:
  - Everything is expanding away from everything else
  - The velocity of expansion is proportional to distance.
  - The expansion is only apparent at very large scales the Solar System is not expanding!
- Expansion of the Universe is a difficult thing for our minds to grasp.
- A few analogies can help.
  - The balloon analogy a 2D version of our 3D Universe.
  - The raisin bread analogy.
- It is important to remember that the analogies are just tools to help us understand. Don't take them too far!

## The Balloon Analogy



Figure 1. Expansion of a baloon

- Pretend we are ants stuck to the surface of the balloon.
- Forget about the 3rd dimension!!!
- Everything is moving away from everything else.
- The further away it is, the faster it is moving away.

### The Raisin Bread Analogy



• Every raisin is moving away from every other raisin.

• The further away it is, the faster it is moving away.

#### Another Picture of Expansion



• Galaxies are moving away from each other.

• Individual galaxies are not growing in size.

#### As we look out in Space, we look back in Time



• We cannot see past the radiation dominated era, because the Universe was opaque before then.

- There is no center!!!!!
- Everyone sees the Universe expanding away in all directions.
- Everyone sees themselves at the center of their Observable Universe.
- There is no need for the Universe to be "expanding into" anything.
- We do not know whether the Universe is finite or infinite in extent.

# Galaxy Clusters



Abell 1689 - a large cluster of galaxies.

• Gravity causes galaxies to collect in groups called clusters.

#### Gravitational Lensing



# Images of Gravitational Lensing



## M33 Rotation Curve



- Galaxy rotation curves look very different from what is expected given the mass of visible matter.
- Some type of "unseen matter" is required to explain the curves.

# Need for Dark Matter

- Gravitational Lensing measurements allow us to calculate how much matter is in clusters.
- Much more matter is present than what we see.
- Galaxy rotation curves also require the presence of some "unseen" or "dark" matter.
- There are other reasons (next week) to believe that this dark matter is not made up of ordinary atoms.
- Most physicists believe that the dark matter is an undiscovered type of sub-atomic particle.
- So far, attempts to see this particle on Earth have been unsuccessful.
- Some astronomers believe that a modification to the laws of gravity at large distance can explain these results, but they are in the minority.

# Our Current Picture of the Composition of the Universe

