Observational Astronomy - Lecture 10 Galaxies - Structure, Types, and Evolution

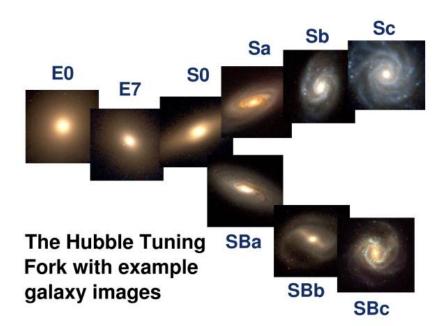
Craig Lage

New York University - Department of Physics

craig.lage@nyu.edu

April 21, 2014

• Galaxies are large groups of stars held together by gravity.


- 2 They vary widely in size:
 - Large galaxies like the Milky way have $10^{11} 10^{12}$ stars.
 - Small dwarf galaxies may have only a few million stars.

• They come in a wide variety of shapes, but there are two main types:

- Spiral galaxies, which are blue in color because they are still forming stars.
- Elliptical galaxies, which are no longer forming many stars and are therefore red in color.
- The star formation rate of the universe peaked long ago and is declining.

- We believe that all galaxies have a Super-Massive Black Hole (SMBH) at their centers.
- Galaxies grow through collisions and mergers.
- Quasars (Quasi-stellar objects) are galaxies whose SMBH is accreting gas at a rapid rate:
 - Because the hot gas emits radiation, they are extremely luminous objects.
 - They were much more numerous in the early universe
 - There are no nearby quasars.

The Hubble Tuning Fork Diagram

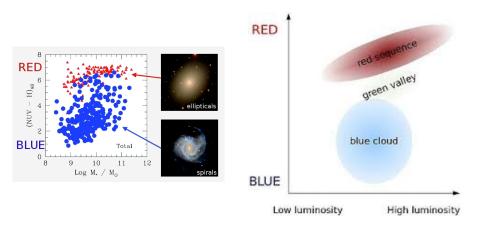
NGC 1300: A Typical Barred Spiral

Barred Spiral Galaxy NGC 1300

Hubble Heritage

NASA, ESA, and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope ACS • STScI-PRC05-01

Red Ellipticals vs Blue Spirals

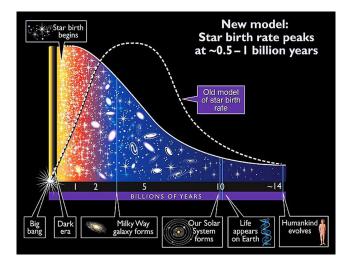

An Elliptical Galaxy. "Red and Dead"

A spiral galaxy. Still forming hot blue stars.

- Spiral galaxies like the Milky Way are still forming new stars.
- Elliptical galaxies have used up their gas and are no longer forming large numbers of stars.

The Red Sequence, the Blue Cloud, and the Green Valley

H-II Regions



The Orion Nebula is a nearby H-II region.

- The gas in H-II regions is heated to luminescence by embedded hot young stars.
- H-II regions are indicative of star formation.
- The pink color is due to emission from ionized hydrogen $(H \alpha)$.

The Star Formation History of the Universe

While the details are uncertain, it is clear that the star formation rate of the universe has dropped significantly $_{9/33}$

The Milky Way as seen from Mt. Haleakala

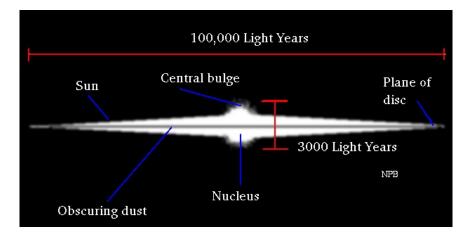
The Milky Way is visible with the naked eye from a dark-sky site.

A Map of the Milky Way

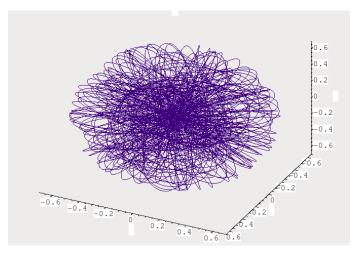
This is what we believe Milky Way would look like if seen from outside.

NGC 6744: A Milky Way Look-alike

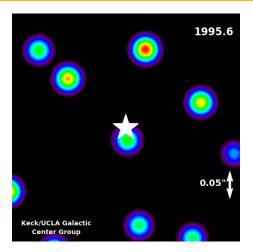
- As we will study in the coming weeks, we believe $\approx 80-90\%$ of the mass of galaxies is in the form of "Dark Matter". This matter is not made up of ordinary matter (i.e. it is not made up of atoms).
- The ordinary matter (which astronomers typically call "baryonic" matter), has the following components:
 - Stars and planets these account for perhaps 10-50% of the ordinary matter.
 - Gas in the interstellar medium this is most of the ordinary matter.
 - "Dust" these are small solid particle made up of heavier elements.


- Dust particles scatter light and block our observations.
- The scattering rate of dust particles is proportional to $\frac{1}{Wavelength^4}$.
- Using long wavelengths (infrared and radio), we can see through the dust clouds.
- The dust in spiral galaxies is concentrated in the galactic plane.
- We cannot see the center of our galaxy in visible light we need to use infrared and radio telescopes.

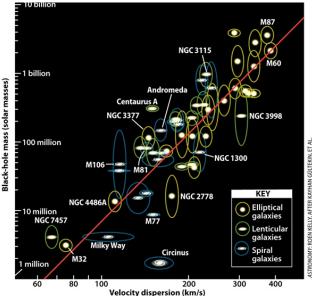
Edge-on Spiral Galaxies



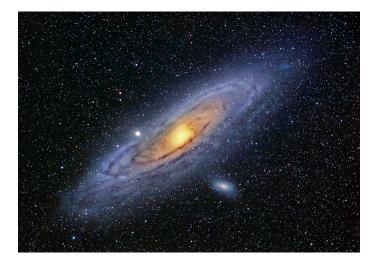
In Edge-on galaxies, we can clearly see the dust lane in the plane of the galaxy.



A Typical Stellar Orbit in a Galaxy


Unlike orbits in the Solar System, galactic orbits are typically not closed.

Movie of Stars Orbiting our Central Black Hole


This movie shows stars orbiting our central black hole. From Kepler's laws, we can calculate that the black hole has a mass of about 4 million times the Sun.

Galaxy Mass is correlated with the mass of the SMBH

ASTRONOMY: ROEN KELLY, AFTER KAYHAN GÜLTEKIN, ET AL

The Andromeda Galaxy (M31) - The Nearest Large Galaxy

This galaxy is visible with the naked eye from a dark-sky site The Milky Way and Andromeda will merge in \approx 4 billion years.

20 / 33

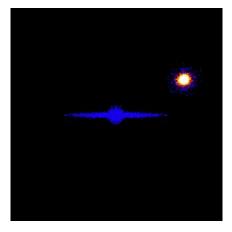
The Large and Small Magellanic Clouds - Nearby Galaxies

A "Warped" Galaxy

Galaxy ESO 510-G13

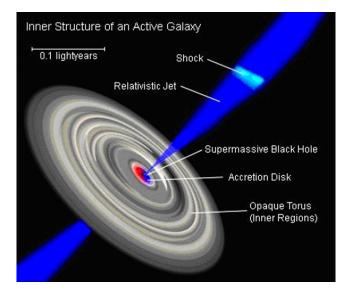

NASA and The Hubble Heritage Team (STScI/AURA) • Hubble Space Telescope WFPC2 • STScI-PRC01-23

Interacting Galaxies - 1



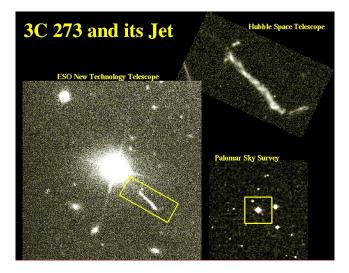
Interacting Galaxies - 2

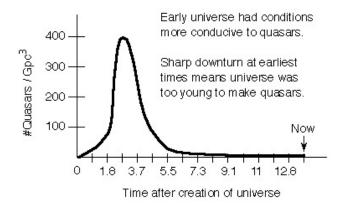
Movies of Milky Way merging with the Sagittarius Dwarf Galaxy



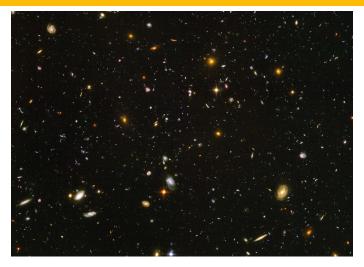
Active Galaxies and Quasars

- Quasars (QUASi-stellAr-Radio Sources) were initially discovered as very distant objects which appeared star-like.
- Over time, we understood that these are large galaxies whose SMBH is accreting large quantities of gas and shining very brightly across a wide range of wavelengths.
 - They can be 100's to 1000's of times more luminous than the Milky Way.
- They come in a wide variety of sizes, luminosities, and appearances, depending on:
 - The size of the SMBH.
 - How rapidly the SMBH is accreting gas.
 - The angle at which we are viewing it.
- Quasars, Blazars, Active Galactic Nuclei (AGN's) are all names used to describe these objects.


Schematic of an Active Galactic Nucleus



The Nearest Active Galaxy - M87 in the Virgo Cluster



The Quasar 3C273

The Hubble Ultra Deep Field

- This is a tiny patch of sky, about 1/10 the size of the moon.
- The observable universe contains at least 10^{11} galaxies!

• Galaxies are large groups of stars held together by gravity.

- 2 They vary widely in size:
 - Large galaxies like the Milky way have $10^{11} 10^{12}$ stars.
 - Small dwarf galaxies may have only a few million stars.

• They come in a wide variety of shapes, but there are two main types:

- Spiral galaxies, which are blue in color because they are still forming stars.
- Elliptical galaxies, which are no longer forming many stars and are therefore red in color.
- The star formation rate of the universe peaked long ago and is declining.

- We believe that all galaxies have a Super-Massive Black Hole (SMBH) at their centers.
- Galaxies grow through collisions and mergers.
- Quasars (Quasi-stellar objects) are galaxies whose SMBH is accreting gas at a rapid rate:
 - Because the hot gas emits radiation, they are extremely luminous objects.
 - They were much more numerous in the early universe
 - There are no nearby quasars.