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Abstract

The Bullet Cluster collision is an ongoing collision of two galaxy clusters in

the constellation of Carina. In this work, we have built a detailed simulation of

this merger, including magnetohydrodynamics, plasma cooling, and adaptive mesh

refinement. We constrain the simulation with data from gravitational lensing re-

constructions and Chandra X-ray flux maps, then compare the resulting model to

plasma temperature maps, Sunyaev-Zel’dovich effect measurements, and cluster

halo radio emission. We constrain the initial conditions by minimizing the chi-

squared figure of merit between the full 2D observational data sets and the simula-

tion, rather than comparing only a few features such as the location of subcluster

centroids, as in previous studies. A simple initial configuration of two triaxial

clusters with Navarro-Frenk-White dark matter profiles and physically reasonable

plasma profiles gives a good fit to the current observational morphology and X-ray

emissions of the merging clusters. There is no need for unconventional physics or

extreme infall velocities. The study gives insight into the astrophysical processes at

play during a galaxy cluster merger. In addition, the techniques developed here to

create realistic, stable, triaxial clusters, and to utilize the totality of the 2D image

data, will be applicable to future simulation studies of other merging clusters. This

work also highlights the important role of non-thermal pressure in galaxy clusters.

A simple model of the non-thermal pressure is primarily used here, but we have

investigated a more physical model where the non-thermal pressure is due to fluid

turbulence, and have outlined a path for future work based on this more physical

model.
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Chapter 1

Introduction

1.1 Overview

Galaxy clusters are the largest bound structures in the Universe. Mergers of

these clusters are key events in the evolution of structure in our universe. The

Bullet Cluster (1E0657-56) is an ongoing collision of two massive galaxy clusters

which has been called, “the most interesting cluster in the Universe,” (Markevitch

2005 [2]). This cluster merger is interesting for several reasons, including its rel-

atively simple structure (Markevitch 2002 [3]) and high surface brightness across

the electromagnetic spectrum. For these reasons, the Bullet Cluster has been ex-

tensively studied observationally, and observational data has been gathered on the

Bullet Cluster across a wide range of wavelengths with a number of different obser-

vational tools, making it an ideal laboratory for the study of the physics of galaxy

clusters and their interactions.

Our current standard model of cosmology, the ΛCDM model, includes “Cold

Dark Matter” as an important component. Most astrophysicists accept that this
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dark matter is made up of an as yet undiscovered subatomic particle. However,

direct searches for this particle have continued to fail to yield a clear discovery.

This leaves open the possibility that the need for dark matter to explain our

observations could be eliminated by modification of the laws of physics at large

distances or small accelerations (see Kroupa 2012 [4], for example). The Bullet

Cluster plays an important role in these discussions, because the clear separation of

the lensing mass centroids from the centroids of the X-ray emission has been taken

as one of the strongest demonstrations of the reality of dark matter as a physical

substance (Clowe 2002 [5]; Clowe 2004 [6]). However, even this interpretation has

been called into question and a modified gravity model has been proposed as an

alternate explanation (Moffat 2007 [7]). Simulation studies offer a valuable tool

for shedding light on these debates, because one can make changes to the physics

of the simulation to investigate alternate physical models.

A number of simulation studies of the Bullet Cluster merger have been per-

formed (Springel and Farrar 2007 [8]; Mastropietro and Burkert 2008; [9]Milosavljević

2007 [10]; Dawson 2013 [11]). Although there has been rough agreement with the

observations, there has been disagreement on some key details of the initial con-

ditions, especially the initial velocities of the two subclusters. These studies have

raised the question of whether or not this cluster is consistent with a ΛCDM cos-

mology. Lee and Komatsu (2010 [12]) reviewed the simulations that had been

done as of 2010, and found that, while the studies of Milosavljevic and Springel

and Farrar were consistent with a ΛCDM cosmology, the study of Mastropietro

and Burkert was not. Lee and Komatsu estimated that the large relative velocity

of the two clusters seen by Mastropietro and Burkert had a probability between

3.6× 10−9 and 3.3× 10−11 of occurring in a ΛCDM universe. Hayashi and White
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(2006 [13]) concluded that the Bullet Cluster was not an exceptionally rare event.

Given the disagreements between the different simulation studies, there is clearly

a need to add clarity to this situation.

We have undertaken to build a detailed simulation model of the Bullet Clus-

ter merger, with the intent to use it to study cluster structure, dark matter-dark

matter and dark matter-baryon interactions, possible modifications of general rela-

tivity, and to check the extent to which this cluster merger is or is not an outlier in

ΛCDM cosmology. At the same time, constraints can be obtained on the present

baryon and electron distributions, the magnetic field of the system and potentially

on the non-thermal sources of support in X-ray clusters. One of the improvements

of this study compared to past studies is that, rather than compare the simulation

to the data using a small number of extracted parameters (mass centroids, calcu-

lated velocities, etc.), we compare the simulation to the observational data on a

pixel-by-pixel basis. Extensive observations of the Bullet Cluster have been made

at multiple wavelengths, and these two-dimensional images contain a large quan-

tity of information. Our approach makes use of this information to provide details

of the structure of the initial clusters and the physics of the collision. A second im-

provement presented here is the implementation of techniques to generate realistic,

stable, triaxial clusters. We will show that our techniques result in an excellent

fit to the observed mass lensing distribution for this cluster collision. We will also

show reasonably good fits to the measurements of X-ray flux, Sunyaev-Zel’dovich

(S-Z) effect, plasma temperature, and radio emission, although these results are

more uncertain due to the additional “gastrophysics” degrees of freedom.

This thesis is organized as follows. We begin (Section 2.1) by reviewing the

current knowledge of the large-scale structure of the universe, the structure of
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galaxy clusters, and the process of galaxy cluster mergers. We then review the

observational data that we use to constrain the simulations and the means of

comparing the observations to the simulations (Section 3.1). This is followed by

a description of the simulation tools employed (Section 3.2), the techniques for

generating the clusters which are the inputs to the collision, the techniques for

analyzing the output of the simulations, and the optimization and error estimation

techniques (Section 3.3). We then show a set of image comparisons comparing the

observations to the best fit simulations, and report what we have learned about

the structure of the initial clusters (Section 4). Finally, we discuss the major

conclusions (Section 5.1), and outline a path for future work (Section 5.2). We

note that much of this work has been peer reviewed and published (Lage and

Farrar 2014 [14]).

1.2 Goals of this Work

Given the above considerations, we identified the following goals at the begin-

ning of this work:

1. Build a detailed simulation of the Bullet Cluster merger, including dark mat-

ter, baryonic matter, magnetic fields, and plasma cooling.

2. Develop the software tools to allow quantitative comparison of the simulation

to the observations by calculating a chi-squared figure of merit between the

2D observational images and the simulation on a pixel-by-pixel basis.

3. Use the developed tools to explore the space of initial conditions and quantify

the structure of the two galaxy clusters participating the collision before the

4



collision began, including the cluster magnetic fields.

4. Use the developed tools to explore the space of initial conditions to clarify

the disagreements on whether or not the cluster collision is consistent with

the ΛCDM standard cosmological model.

5. After developing a simulation which adequately fits the observations using

standard physics, explore the addition of dark matter - dark matter and dark

matter - baryon interactions and attempt to place limits on the magnitude of

these interactions. Limits based on these lines have already been published

(Markevitch 2004 [15]; Randall 2008 [16]), but we hope to improve on these

limits.
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Chapter 2

Galaxy Clusters and Cluster

Collisions

2.1 The Large-Scale Structure of the Universe

The last few decades have seen the transition of cosmology from a qualitative

discipline to a quantitative science, causing the current situation in the field to

often be referred to as the era of “Precision Cosmology”. A detailed exposition

of the current status of cosmology is beyond the scope of this thesis, but a short

summary is needed to set the stage for the work. Readers interested in more detail

are referred to one of the many good textbooks on the topic such as Mukhanov

(2005 [17]) . The standard ΛCDM model of cosmology is extremely successful in

describing the properties and evolution of the universe at large scales. Based on

this model, we know that small initial density perturbations have grown under the

influence of gravity into the large-scale structure that we see today. An example

of this known as the Horizon Run (Kim 2009 [18]) is shown in Figure 2.1. This is
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a dark-matter-only simulation of structure growth as the Universe has evolved.

Figure 2.1: Growth of cosmic structure as seen in the Horizon simulation (Kim

2009 [18]).

The standard ΛCDM model of cosmology is a solution to the Friedmann equa-

tions, which result from applying the equations of General Relativity to the Uni-

verse as a whole. Observationally, it is found that the Universe is quite close

to being spatially flat, which means that the average mass-energy density of the

Universe is close to the critical density:

ρCrit =
3H2

0

8πG
, (2.1)
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where H0 is the Hubble constant. It is usual to describe the different components

of the density as fractions of the critical density, as follows:

Ωi =
ρi

ρCrit

. (2.2)

In this work, all cosmological calculations assume the following parameters:

H0 = 70
km

sec Mpc
Ωm = 0.30 ΩΛ = 0.70. (2.3)

Here Ωm represents the fraction of the density due to matter, and ΩΛ represents

the fraction of the density due to dark energy. We can further partition Ωm into

Ωb, the fraction due to baryons (ordinary matter) and ΩCDM, the fraction due to

dark matter. This study will shed light on the ratio of these two quantities, and

how our simulations compare to the ΛCDM model, as will be discussed in later

sections.

2.2 The Structure of Galaxy Clusters

2.2.1 Galaxy Cluster Overview

We begin by reviewing the major features of galaxy clusters using Figure 2.2,

which shows some of the typical features of a galaxy cluster (Peng 2008 [19];

Chandra website 2008 [20]). This galaxy cluster, Abell-1689, is at a redshift z =

0.18, placing it at a distance of approximately 700 Mpc (cosmological distance

calculations follow Hogg 1999 [21]). The cluster has a total mass determined from

mass lensing of approximately 2.0×1015 M� (Coe 2010 [22]). The white light image,
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taken with the Hubble Space Telescope, clearly shows the large number of galaxies

contained in the cluster; the galaxies in this cluster number in the thousands. Near

the center of the cluster is a large elliptical galaxy. Large clusters typically have a

large elliptical galaxy near the center which is referred to as the “Brightest Cluster

Galaxy” (BCG), or sometimes as the “Central Dominant” (cD) galaxy. Also visible

in the white light image are a number of curved arcs, roughly concentric with the

center of the cluster. These are lensed images of galaxies or quasars more distant

than the Abell-1689 cluster. By building a model of the galaxy cluster and the

distant galaxies which are being lensed, one can determine the distribution of mass

within the galaxy cluster. It is important to note that mass determination through

gravitational lensing is independent of the type of matter doing the lensing; any

matter which contributes to the gravitational field is included in the lensing mass

determination. From this, as well as from other observations, it is known that

galaxy clusters contain large amounts of non-luminous (i.e. “dark”) matter.
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Figure 2.2: Abell-1689 - A typical large galaxy cluster.

Overlaid with the visible light image in Figure 2.2 is a false color (violet) image

of the cluster taken in the X-ray region with the Chandra X-ray telescope. Large

galaxy clusters contain most of their ordinary matter (i.e. baryons) in the form of

hot, diffuse ionized gas (i.e. plasma). This hot gas emits X-rays, primarily through

the mechanism of bremsstrahlung as energetic electrons are accelerated through

collisions with the more massive ionized nuclei. This X-ray radiation is visible

to an X-ray detector like Chandra, and can be used to gather information on the

density and temperature of the hot gas (Vikhlinin 2005 [23]). Perhaps surprisingly,

it is found that in massive clusters most of the baryonic mass of the cluster is in

the form of this hot gas, and the baryonic mass in the form of stars is only a few

percent of the total (Gonzalez 2013 [24]).
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2.2.2 Dark Matter Profiles

It has long been known that galaxy clusters contain large quantities of non-

luminous matter. In fact, the original motivation for the dark matter concept

came from Zwicky’s analysis of galaxy cluster velocity dispersions in the 1930’s

(Zwicky 1937 [25]). Today, large N-body simulations based on the ΛCDM model of

cosmology accurately reproduce the observed large-scale structure of the Universe.

These simulations show that the visible part of galaxy clusters are embedded in

large extended dark matter halos. By examining the density profiles of these

dark matter halos, a number of semi-empirical models of these halos have been

developed. One of the more successful of these has been the NFW profile, based

on the work of Navarro, Frenk, and White (1996 [26]). While other profiles, such

as the Einasto and Sersic profiles have been proposed, the simple two-parameter

NFW is widely used and has been shown to do a good job of reproducing the

simulated dark matter halo profiles (see Merritt et.al. 2006 [27] for a review of

these profiles). The NFW profile is the model used in this work.

The NFW profile is a two parameter model, comprising a density parameter ρ0

and a scale radius parameter RC, as follows:

ρDM =
ρ0

R
RC

(1 + R
RC

)2
. (2.4)

At radii much less than the scale radius RC, the density falls off ∝ 1/R, and at

radii much larger than the scale radius, the density falls off ∝ 1/R3. Defining the

total mass included in the NFW profile is problematic, since integrating the profile

from R = 0 to R = ∞ gives an infinite result. Thus, it is necessary to cut off the

integral at some large but finite radius in order to give a finite result. The usual
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prescription for doing this is to integrate the density until it falls to 200 times

the critical density of the universe (the density which results in a flat Universe

as described by the Friedmann equations). This radius is then referred to as the

“virial radius”, or R200. One then further defines the concentration parameter C

of the dark matter halo as the ratio of the virial radius to the scale radius, and the

mass of the halo M200 as the total halo mass contained within the virial radius.

Integrating the profile then gives the following relations, where ρCRIT is the critical

density of the Universe at z=0:

R200 =

[
M200C2

4π 200 ρCRIT(1 + z)3(1 + C)((1 + C) ln(1 + C)− C)

]1/3

, (2.5)

C =
R200

RC

, (2.6)

ρ0 =
M200C3(1 + C)

4πR3
200((1 + C) ln(1 + C)− C)

. (2.7)

It is usually more convenient to use the two parameters (M200,C) to characterize

the halo instead of the two parameters (ρ0,RC), and this is the convention that

is used in this work. Figure 2.3 shows a typical dark matter profile, calculated

for a cluster at z=0 with a mass of M200 = 1.0E15 M� and a concentration factor

C=3.0. The change in slope from a 1/R to a 1/R3 profile is clearly seen.
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Figure 2.3: Typical Dark Matter profile (simulation).

While the value of R200 is most often used to quantfiy the size of the cluster,

other similarly defined measures, such as R100, R180, and R500 are also used.

It is also found both observationally and through simulation (see for example

Comerford 2007 [28]; Vikhlinin 2006 [29]; Okabe 2010 [30]; Bhattacharya 2013 [31])

that the concentration and masses of galaxy clusters are not fully independent

parameters, in that more massive clusters tend to be less concentrated. Figure

2.4, reproduced from Comerford, et.al. [28] shows this relation.
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Figure 2.4: Mass-Concentration relation of galaxy clusters.

2.2.3 Baryon Profiles and X-ray Emission

While the dark matter halo of a galaxy cluster is believed to dominate the total

mass of the cluster, it is not directly observable, and is only detected through its

gravitational effects. However, clusters also contain a significant quantity of hot,

ionized gas (plasma) which is directly observable through a variety of techniques.

The most direct method is through measurement of the X-rays emitted by the hot

gas, as seen in the violet overlay in Figure 2.2. With the advent of orbiting X-ray

satellites like Chandra [32] and XMM-Newton, it is now possible to get detailed

X-ray images of galaxy clusters. These instruments detect X-ray photons in the

approximate energy range of 0.5-10.0 keV, and use grazing-incidence X-ray mirrors

which are capable of forming images with arc-second resolution.

The hot gas emits X-rays through several mechanisms, including bremsstrahlung,

emitted when electrons are accelerated through collisions with the heavier ions, and

line emission from electronic transitions in heavier elements. The quantitative cal-
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culation of the X-ray emission from the hot plasma is discussed in detail in Section

3.3.2.2. From analysis of the X-ray emission from galaxy clusters, many studies

have been performed to quantify the density and temperature profiles of the hot

ionized gas. Figure 2.5, reproduced from Vikhlinin (2006 [29]) shows measured

density profiles of both the total mass and the X-ray emitting gas. The thick yel-

low line is the calculated NFW profile, which is seen to fit the total mass profile

well. It is seen that there are a range of profiles for the cluster gas, but that in

general the gas density profile follows a similar trend to the total matter density

profile. However, since the gas density profile falls off less steeply than the total

matter profile, the baryon fraction (i.e. the fraction of total mass made up of

baryons) increases as one moves out from the center of the cluster.
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Figure 2.5: Measured total matter density and gas density as a function of ra-

dius for a number of X-ray emitting galaxy clusters. The thick yellow line is the

calculated NFW profile. Figure reproduced from Vikhlinin [29].

Because the X-ray flux is caused by collisions between gas particles, the X-ray

flux scales as the square of the gas number density. This means that the X-ray

flux increases dramatically at the center of the cluster where the number density

is the highest. The cluster gas density is low enough that the cluster is typically

optically thin, so the X-ray flux emitted from the cluster gas is radiated away and

causes the cluster gas to lose energy. This causes the center of the cluster to have a

cooler region caused by the higher rate of energy loss due to X-ray radiation. This

is clearly illustrated in Figure 2.6, reproduced from Leccardi and Molendi (2008

[33]), which shows the temperature profiles for a sample of galaxy clusters.
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Figure 2.6: Measured temperature profiles for a sample of galaxy clusters. The

dots are the mean temperature and the dotted lines show the one sigma scatter.

TM is the mean cluster temperature outside 0.1 R180. Figure reproduced from

Leccardi and Molendi [33].

While the gas density and gas temperature profiles follow some general trends,

there is considerable variability among clusters. However, the gas pressure of

clusters follows a more universal profile. The reason is that the total mass density

of the cluster is dominated by the dark matter, and the total mass density is what

sets the gravitational potential. The gradient of the gravitational potential gives

the gravitational force, which in hydrostatic equilibrium is balanced by the fluid

pressure. Thus it is found that, when scaled properly, the pressure profile of galaxy

clusters all follow a similar trend. Figure 2.7, reproduced from Arnaud (2010 [34]),

shows this relation.
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Figure 2.7: Measured cluster pressure profiles for a sample of galaxy clusters. The

green curves are from Vikhlinin [29], while the blue and black curves are from

Arnaud [34]. The Figure is reproduced from [34].

Since the density and temperature of the gas can vary independently, modeling

of the cluster gas profiles can be complex. One simple model that has enjoyed

significant success is the so-called “Beta-model” (see Arnaud 2009 [35]) for an

excellent description of the history of this model). In this model, the gas density

is assumed to follow a profile of the following form:

ρG =
ρG0

(1 + ( R
RC

)2)3β/2
. (2.8)
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Here RC is referred to as the “cooling radius”, and β describes the fall-off of

the plasma density. A value of β = 1 represents an isothermal plasma. Figure 2.8

shows some representative gas density profiles for a range of values of the parameter

β.
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Figure 2.8: Typical Gas Density profile (simulation).

The X-ray flux is an important observational signal used for characterizing the

gas properties of a galaxy cluster. An equally important signal, especially in recent

years, is the use of the Sunyaez-Zel’dovich effect. The effect is caused by inverse

Compton scattering of the Cosmic Microwave Background(CMB) photons by the

hot plasma, which leads to a distortion of the CMB blackbody spectrum. We will

quantify this in more detail in Section 3.3.2.2, but at this point we will simply state

that the S-Z effect leads to a reduction in the measured CMB temperature which

is proportional to the gas pressure (gas density times gas temperature) integrated

along the line of sight. For this reason, large galaxy clusters cause “shadows” of

the CMB radiation which have a slightly reduced temperature. The S-Z signal can
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be measured with ground and space-based radio telescopes, and investigations of

these signals has led to a rapid acceleration of our understanding of the structure

of massive galaxy clusters (see, for example, Battaglia 2010 [36]; Battaglia 2012

[37]; Khedekar 2013 [38]; Prokhorov 2012 [39]; Birnboim 2013 [40]). Because the

S-Z signal is proportional to the gas density, and the X-ray flux is proportional to

the square of the gas density, these two signals together can help give independent

measures of the density and the temperature, and we utilize these independent

measures to characterize the Bullet Cluster in this work. An example of the S-Z

signal of a large galaxy cluster is shown in Figure 2.9 (Plagge 2010 [41]). Another

reason for the importance of the S-Z signal is that the S-Z signal is independent

of redshift. This makes it an excellent tool for identifying distant clusters at high

redshift, where the individual galaxies have become quite dim and difficult to image

with optical telescopes.
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Figure 2.9: The Sunyaev-Zel’dovich signal for the cluster Abell 2744, measured

with the South Pole Telescope. The four colored maps are in µK and are 150

GHz (upper left), 220 GHz (upper right), where the S-Z signal is much reduced,

band subtracted (lower left), and jackknife noise map(lower right). These maps

are reproduced from Plagge [41].

2.2.4 Need for Non-Thermal Pressure

It has been known for some time (see, for example Loeb 1994 [42]) that a signif-

icant amount of non-thermal pressure support is needed in galaxy clusters in order

to agree with the observations. The assumption that the gas in galaxy clusters is

in hydrostatic equilibrium leads to predictions of gas temperature that are well in

excess of what is observed. Thus, some form of non-thermal pressure appears to be

supporting the gas, in addition to the thermal pressure. Several mechanisms have

been suggested as the source of this non-thermal pressure, including turbulent gas

motions, and cosmic ray particles (Battaglia 2010 [36]; Bode 2009 [43]; Bruggen

2005 [44]; Lazarian 2011 [45]). Recent publications indicate that the turbulent

fluid motions are the likely dominant source of the non-thermal pressure (Shi and
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Komatsu 2014 [46]; Nelson 2014 [47]; Battaglia 2012 [37]), and our results in this

work are consistent with this, as will be shown in Section 4.5.

Even if the turbulent fluid motions are the dominant source of the non-thermal

pressure, there still remains the question of what sustains these turbulent motions

over time, since viscosity will cause the turbulent motions to dissipate and be

converted to thermal energy. In addition, without a source of energy to sustain a

reservoir of thermal and non-thermal pressure, simulations of galaxy clusters are

suscpetible to a “cooling-flow problem”. Since the central region of the galaxy

cluster is radiating X-rays most strongly, energy is carried away from the central

region, causing the center to cool and the thermal pressure to be reduced. Gas

from the outer regions, now lacking pressure support, then flows into the central

regions, increasing the density and consequently the X-ray emissions, leading to

further cooling. Simulations show that, lacking a continued energy source, the gas

in galaxy clusters should collapse in a time short compared to the Hubble time.

While clusters are observed to have cores of cooler plasma (Vikhlinin 2005 [23];

Markevitch 2007 [48]; Owers 2009 [49]), these cores appear to be realtively stable

and are not collapsing. This discrepancy with observation has been referred to as

the “cooling catastrophe problem” (Blanton 2002 [50]; Vernaleo 2006 [51]; Parrish

2009 [52]). We therefore conclude that there must be a source of energy flowing

into the cluster gas to maintain the pressure support. The most likely source

of energy to sustain the thermal energy and turbulent fluid motions is energetic

outflows from Active Galactic Nuclei (AGN) (Battaglia 2010 [36]). However, the

details of this energy outflow, such as the rate of energy transfer and whether the

energy flow is continuous or intermittent, is still being actively investigated.
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2.2.5 Cluster Shapes

Galaxy clusters grow with time as the large-scale structure of the Universe

grows. Since the clusters grow from hierarchical mergers of smaller structures, they

are generally not spherically symmetric. There are two main sources of information

on the shape of the clusters. First, we can infer the shape of the mass distribution

from gravitational measurements or by observing the shapes of the X-ray emissions

from the hot gas (Limousin 2013 [53]). Second, N-body simulations of the growth

of large-scale structure can be interrogated to determine the shapes of the dark

matter halos (Schneider 2012 [54]; Bailin 2005 [55]). All of these studies agree

that galaxy clusters are typically not spherical in shape. The recent study by Lau

[56] also shows how the shapes can help elucidate the physics involved in cluster

formation.

In order to quantify the shape of these clusters, we introduce a set of axis ratios.

We assume that the clusters are ellipsoidal shapes with each of the three axes of

the ellipsoid being different. We arbitrarily define the X-axis as the longest axis

and the Z-axis as the shortest axis. The shape of the ellipsoid is then completely

determined by the two ratios of these three axes, with P being the Z-axis to X-axis

ratio, and Q being the Y-axis to X-axis ratio. With these definitions, we have

1.0 ≥ Q ≥ P ≥ 0.0. If the X and Y axes are equal (meaning Q = 1), then the

ellipsoid is an oblate spheroid, with a shape like a pancake. If the Y and Z axes

are equal (meaning P = Q), then the ellipsoid is a prolate spheroid, with a shape

like a cigar. If all three axes are equal, then the shape is a sphere, and if all three

axes are unequal, we refer to the shape as triaxial. Bailin, et.al. (2005 [55]) have

extracted the shapes of a large number of dark matter halos that result from an

N-body simulation of structure growth, with the result shown in Figure 2.10. It

23



can be seen that the majority of galaxy clusters are triaxial.

  

P

Q

Figure 2.10: Axis ratios of dark matter halos of galaxy clusters from N-body

simulations. Reproduced from [55].

2.2.6 Magnetic Fields

The magnetic fields of galaxy clusters are of interest for a number of reasons.

First, radio emissions are detected from galaxy clusters (especially merging clus-

ters), and it is believed that these radio emissions are due, at least in part, to

synchrotron emission from energetic electrons spiraling along magnetic field lines.

Knowing the strength and structure of the cluster magnetic fields allows one to

model these radio emissions. Second, it is clear that the cluster magnetic fields

are amplified during cluster collisions by the conversion of turbulent fluid energy
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to magnetic field energy. Measurements of cluster magnetic fields have been at-

tempted by measuring the Faraday rotation of distant sources as their radiation

passes through the galaxy cluster. Such measurements indicate that cluster mag-

netic fields can reach values as high as 10’s of µG (Carilli 2002 [57]; Vogt 2003

[58]; Ensslin 2009 [59]), and it has been suggested that the magnetic fields may

reach levels where they become dynamically important [57]. Attempts have also

been made to correlate the cluster magnetic fields with cluster radio emission [60].

These measurements, together with simulations (Dolag 1999 [61]; Dolag 2001 [62];

Dolag 2002 [63]; Kotarba 2011 [64]), show that the magnetic fields in the clusters

are larger in regions of higher gas density, and Dolag (2001 [62]) has suggested a

scaling of |B| ∝ ρ0.9. We will discuss our attempts to model the magnetic fields in

the Bullet cluster collision in the subsequent sections.

2.3 Collisions of Galaxy Clusters

Clusters of galaxies grow in a hierarchical process through mergers of smaller

clusters. Kravtsov (2012 [65]) has written an excellent review of the formation

of clusters. This process has been ongoing through the history of the universe,

resulting in the large clusters we see today. While some of the galaxy clusters we

observe today are relatively quiescent, others are clearly in the process of merging.

In addition to the Bullet Cluster, some of the other interesting merging clusters are

known as “El Gordo”, the “Musket Ball Cluster”, Abell 576, Abell 520, and Abell

222/223. However, of these, the Bullet Cluster is perhaps the most interesting due

to its very simple structure which apparently consists of two clusters merging very

nearly in the plane of the sky. Figure 2.11 shows a composite image of the Bullet
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Cluster collision (Clowe [66]). The white light image is from the Hubble space

telescope. The blue overlay shows the location of the cluster mass, as determined

from gravitational lensing (Bradac 2006 [67]). The pink overlay shows the X-ray

flux map from the Chandra X-ray telescope (Markevitch 2005 [2]). This image has

become somewhat of an iconic image with respect to the search for the existance of

dark matter, in that the clear separation of the mass centroids from the X-ray flux

centroids has been taken as “proof” of the existence of dark matter. (Clowe 2006

[6]). As discussed above, the ability to use a galaxy cluster merger as a laboratory

to study our knowledge of the structure of clusters and their interactions is one of

the prime motivations for this work.

Figure 2.11: Composite image of the Bullet Cluster collision. The white light

image is from the Hubble space telescope. The blue overlay shows the location of

the cluster mass, as determined from gravitational lensing [67]. The pink overlay

shows the X-ray flux map from the Chandra X-ray telescope [2]. Figure from [66].
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Chapter 3

Data, Tools, and Methods

3.1 Data

One of the primary goals of this study is to build a detailed simulation of the

Bullet Cluster collsion and compare the simulation to observations. To this end,

we have collected a number of observations of the Bullet Cluster which have been

made at a wide range of wavelengths. This section summarizes those observations.

3.1.1 Summary of Observations

There are a total of six observational datasets which we compare to the simu-

lation:

• A mass lensing reconstruction

• Three maps of X-ray intensity in different energy bins

• The Sunyaev-Zel’dovich effect CMB temperature decrement

• The radio halo intensity.
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Each dataset is converted to a 2D map containing 110x110 pixels1, where for

each pixel we have an observed value and an estimated uncertainty. Two primary

datasets, the mass lensing data and the lowest energy X-ray flux, are used to

constrain the simulation initial conditions and fitting parameters. The resulting

simulation is then used to generate images which are compared to the remaining

four datasets. We have manually identified the central region where the data has

the highest confidence, and only pixels inside this region are included in the χ2

calculation in Equation 3.1. This region is shown by the heavy white outline in

Figure 3.1; it contains 5780 pixels in each dataset and is about 4.5 arc minutes

across.

Using the two primary datasets, we construct the following combined figure of

merit to measure the quality of fit between simulation and measurement

χ2 =
1

NkNi

Nk∑
Observations=k

Ni∑
Pixels=i

(Simk
i −Obsk

i )2

(σk
i )2

, (3.1)

and then vary the parameters to minimize this χ2. For brevity, we refer to

this parameter as χ2 throughout this work, but in fact it is χ2 per degree of

freedom. When fitting to the two primary datasets, the product NkNi is 11,560.

We note that the parameter χ2 is used as a figure of merit for finding the best

fit initial conditions. Our large-scale simulation provides a mean description of

the system, and is not expected or intended to capture small-scale details such as

inhomogeneous initial conditions and accretion of small mass concentrations during

the merging process. For these reasons, although the χ2 parameter is useful for

finding the best-fit initial conditions, we do not expect a value of one.

1Maps of 110x110 pixels were chosen for historical reasons. The initial mass lensing maps
were at this resolution, so all subsequent maps were adjusted to match.

28



3.1.2 Primary Constraining Datasets

• The gravitational lensing reconstruction from Bradac et.al. (2006 [67]). This

dataset consists of the total projected mass in each 2D pixel as determined

to reproduce the observed weak and strong lensing data. The values of σi

associated with the reconstruction have also been provided by M. Bradac

[private communication]; these typically range from 5-25% of the mass lens-

ing data. More recently, a new mass reconstruction has become available

(Paraficz et.al. 2012 [68]). We have examined this new reconstruction, and

it shows promise of resolving some of the discrepancies we see, but it is not

incorporated into this analysis.

• X-ray flux measurements from the Chandra X-ray observatory [32]. A total

of 9 separate observations are included in the datasets, representing a total

observing time of 558 ks. The X-ray flux is binned into three separate energy

bins, 500eV - 2000eV, 2000eV - 5000eV, and 5000eV - 8000eV. The lowest

energy bin (500eV - 2000eV), which contains most of the photons, is our

second primary dataset, along with the mass-lensing map. The “Ciao” [69]

software analysis package is used to reduce the measured data to an X-ray flux

in photons/(cm2sec). For this data, a statistical uncertainty of 1/
√

Nphotons

and a systematic uncertainty of 1.7% [32] are combined in quadrature to

generate σi.
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Figure 3.1: The primary datasets. Left: Mass lensing dataset. Center: 500eV-

2000eV X-ray flux dataset. Right: These two primary datasets overlaid. Only the

region inside the heavy white outline is included in the χ2 calculation.

3.1.3 Secondary Comparison Datasets

• The two higher energy X-ray bins (2000eV - 5000eV and 5000eV - 8000eV)

from the Chandra X-ray data, extracted as described above.

• A Sunyaev-Zel’dovich effect map from Plagge et.al. (2010 [41]). This is a

map of the SZE temperature decrement in µK, measured using the South

Pole Telescope. Based on [41], σi is taken to have a constant value of 25 µK.

Earlier data from Halverson (2009 [70]) was used initially, but the higher

resolution Plagge data has proven more useful.

• Radio halo measurements at 1.3 GHz from Liang et.al. (2000 [71]). This

dataset is a digitized version of the map in Figure 5 from [71]. No attempt

is made to assign a σi value for this dataset. More recently, higher resolution

data from Shimwell et.al. (2014 [72]) has become available and is being
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examined.

Plots of each of the six datasets are shown in Figure 3.2. Comparisons of these

datasets to the corresponding simulation predictions, are shown in the following

sections.
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Figure 3.2: The six observational datasets.

3.2 Software Tools

A number of different software tools are used in this study. These include tools

for generating the initial clusters, tools for simulating the actual collision, and

tools for analyzing the results of the simulation. The Table 3.1 gives a high-level

overview of these software tools. The methods by which these tools are employed

to generate the simulation results are detailed in the subsequent sections.
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Generating Initial Clusters

Tool Purpose Source
SMILE Generation of stable

DM halos
Vasiliev [73]

TriaxialHalo Generation of stable
baryon profiles

Lage (this work)

CombineGalaxies Combines and aligns
multiple clusters

MPA (Springel, private)

GarFields Generation of random
B-field

MPA [74]

Simulation of Collision

Tool Purpose Source
Gadget Simulation of

Collision
MPA [75]

Enzo Simulation of
Collision

UCSD [76]

Run scripts Python scripts for
automatically running

the simulation,
analyzing the results,

and launching new
simulations

Lage (this work)

Analyzing Results

Tool Purpose Source
APEC Calculation of plasma

X-ray emissivity
Chandra [69], [77]

YT Analysis of AMR
output

Turk, et.al. [1]

Findfom Python scripts for
calculating χ2 and
other observables

Lage (this work)

Table 3.1: Summary of Software Tools

3.2.1 Simulation Conditions

For the simulation of the actual collision, we evaluated two simulation tools,

Gadget (Springel 2005 [75]), an SPH code, and Enzo (Bryan 2013 [76]), a grid-based
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hydrodynamics code with adaptive mesh refinement (AMR). Both simulators use

discrete particles for the dark matter, but differ in the simulation of the hydrody-

namics. The two simulators were found to give similar results, but ultimately, the

Enzo simulator was chosen when the need for incorporation of MHD into the sim-

ulations became apparent. A summary of the key simulation conditions is shown

in Table 3.2.

Parameter Value Units

Simulation Volume 12000 x 6000 x 6000 kpc

Coarse Grid 128 x 64 x 64 -

Maximum Number of

Refinement Levels

6 -

Minimum Grid Cell Size 5.8 kpc

Total Number of Grid Cells 3.2E6 -

Maximum Baryon Mass per Grid

Cell

2.5E8 M�

Number of DM Particles 5.0E6 -

Mass of DM Particles 1.5E8 M�

Hydro Method Runge Kutta 3rd-order MUSCL

w/ Dedner MHD

-

Cosmology Flat, Static -

Table 3.2: Enzo simulation conditions.
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3.3 Methods

This section describes the methods used for generating the initial clusters,

simulating the actual collision, and analyzing the results of the simulation.

3.3.1 Generation of Initial Conditions and Fitting Param-

eters

The simulations begin with two widely separated galaxy clusters, each in a

state of dynamic equilibrium, approaching each other on a collision course. For

clarity, in what follows we will refer to the larger cluster as the main cluster, and

the smaller cluster as the bullet cluster. In the images, the bullet cluster initially

approached the main cluster from the left, but has now passed through the main

cluster and is currently on the right. The major challenge in obtaining a simulation

which produces a good fit to the observations lies in choosing appropriate initial

conditions.

In the first stage of this effort we used spherically symmetric clusters. This

gave an approximate fit to the observations, but as our understanding increased

we came to appreciate that some features of the system are most likely due to initial

cluster triaxiality. We find that initial clusters with a triaxial shape give a much

better fit to the data, although this introduces additional variables. With tens of

thousands of measurements to fit, these additional parameters are in fact quite

well constrained. The procedures used to generate stable triaxial clusters with an

NFW dark matter profile and a flexible baryon profile are described below.
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3.3.1.1 Fitting Parameter Overview

We use a total of 34 fitting parameters, as listed in Table 3.3 and described

below, to model the collision. The meaning of these parameters, the method

for obtaining the optimum parameter values, and the method for estimating the

uncertainties are discussed in detail in the following sections.
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Fitting Parameters with Best Fit Values

Dark Matter Halo Parameters

Parameter Description Value Sigma Units

M1 Main Cluster Mass (M200) 1.91E15 0.20E15 M�

M2 Bullet Cluster Mass (M200) 2.59E14 0.31E14 M�

C1 Main Cluster Concentration 1.17 0.14 -

C2 Bullet Cluster Concentration 5.45 0.70 -

P1 Main Cluster Z/X Axis Ratio 0.35 0.05 -

Q1 Main Cluster Y/X Axis Ratio 0.68 0.09 -

P2 Bullet Cluster Z/X Axis Ratio 0.61 0.08 -

Q2 Bullet Cluster Y/X Axis Ratio 0.68 0.10 -

Gas Profile Parameters

Parameter Description Value Sigma Units

GF1 Main Cluster Gas Fraction 0.19 0.02 -

GF2 Bullet Cluster Gas Fraction 0.17 0.02 -

RC11 Main Cluster Gas Radius1 59.4 7.9 kpc

RC12 Bullet Cluster Gas Radius1 19.8 1.9 kpc

β11 Main Cluster Exponent1 0.38 0.06 -

β12 Bullet Cluster Exponent1 0.51 0.07 -

RC21 Main Cluster Gas Radius2 69.9 11.4 kpc

RC22 Bullet Cluster Gas Radius2 47.8 6.4 kpc

β21 Main Cluster Exponent2 0.45 0.05 -

β22 Bullet Cluster Exponent2 0.85 0.14 -

RC31 Main Cluster Gas Radius3 647 82 kpc

RC32 Bullet Cluster Gas Radius3 465 80 kpc
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Fitting Parameters with Best Fit Values

Gas Profile Parameters - Cont.

β31 Main Cluster Exponent3 0.67 0.05 -

β32 Bullet Cluster Exponent3 0.50 0.06 -

Orbital Geometry Parameters

Parameter Description Value Sigma Units

φ1 Main Cluster Euler Angle 1 185 33 Degrees

θ1 Main Cluster Euler Angle 2 38.4 5.9 Degrees

ψ1 Main Cluster Euler Angle 3 221 30 Degrees

φ2 Bullet Cluster Euler Angle 1 164 23 Degrees

θ2 Bullet Cluster Euler Angle 2 100 14 Degrees

ψ2 Bullet Cluster Euler Angle 3 65.0 10 Degrees

IP Impact Parameter 256 35 kpc

VInc Infall Velocity Increment -10.9 15 %

Remaining Parameters

Parameter Description Value Sigma Units

Z Metallicity (Cooling) 0.78 0.10 Solar

Mag Peak Magnetic Field Magnitude 61.0 5.4 µG

fntp Non-Thermal Pressure factor 0.52 0.09 -

Visc Viscosity 0.12 0.02 Spitzer

Table 3.3: Best fit parameters determined from the simulations, as well as an

estimate of the uncertainties. The determination of the uncertainties is described

in Section 3.3.4
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3.3.1.2 Dark Matter Halos

For the dark matter halos, we assume that each of the initial clusters is de-

scribed by a triaxial NFW profile (Navarro, Frenk, White 1996 [26]; Lee and Suto

2003 [78]), with dark matter surfaces of constant density being a set of concentric

ellipsoids, as follows:

ρDM =
ρDM0

R
RC

(1 + R
RC

)2
. (3.2)

Here the radial parameter R is given by:

R2 = x2 +
y2

Q2
+

z2

P2
, (3.3)

where P and Q are the triaxiality axis ratios. As discussed earlier, we take P ≤
Q ≤ 1, meaning that the x-axis is the long axis and the z axis is the short axis.

Each ellipsoid is then rotated to its initial orientation, as described later. The

parameters ρDM0 and RC are related to the virial radius R200, the concentration

parameter C, the mass within the virial radius M200, and the critical density ρCRIT

at redshift z as described in equations 2.5, 2.6, and 2.7. There are thus a total of

eight parameters to describe the two clusters: the mass M200, the concentration

parameter C, and the shape parameters P and Q, for each of the two clusters.

3.3.1.3 Baryonic Distributions

Following Lee and Suto (2003 [78]), we make the physically reasonable assump-

tion that the density and temperature of the baryonic plasma are constant along

surfaces of constant gravitational potential. We find that correctly fitting the X-

Ray emission data depends critically on the gas profiles of the initial clusters. For

this reason, we assume a flexible three-slope gas density profile, as follows:
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ρG =
ρG0

(1 + ( R
RC1

)2)β1(1 + ( R
RC2

)2)β2−β1(1 + ( R
RC3

)2)β3−β2
, (3.4)

where the parameter R is given by R2 = x2 + y2/Q(R)2 + z2/P(R)2, with P(R)

and Q(R) the (slowly varying) shape parameters of the equipotential ellipsoids. As

described in detail in Binney and Tremaine (2008 [79]), the equipotential ellipsoids

defined by P(R) and Q(R) are aligned with the density ellipsoids, but they are more

spherical than the density ellipsoids and become more spherical still as one moves

out from the cluster center.

The central density parameter ρG0 is adjusted so that the ratio of baryonic mass

to total cluster mass within R200 is equal to an assumed gas fraction parameter

GF. This parameter GF is then taken as a fitting parameter for each cluster.

For given plasma and dark matter densities, the plasma temperature required for

hydrostatic equilibrium is determined by evaluating the following integral for the

particle internal energy

u(R) =
3

2ρG(R)

∫ Rmax

R

∂ϕ

∂R′
ρG(R′)dR′. (3.5)

Since the plasma temperature is assumed constant along the equipotential el-

lipsoids, it is sufficient to evaluate this integral along the x-axis of the cluster, and

use the resulting value all along the equipotential surface intersecting that axis at

R.

There are thus 14 parameters needed to describe the baryonic matter distribu-

tions: the gas fraction parameter GF and three pairs of (RC, β) parameters, for

each of the two clusters.
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3.3.1.4 Cluster Generation Procedure

To combine these dark matter and gas profiles into a stable cluster we use the

following procedure:

• We choose the cluster mass, concentration parameter, and triaxiality param-

eters. These parameters fix the mass density, and hence the gravitational

potential of the cluster.

• We generate a stable dark matter halo using the Schwarzschild procedure[80].

This procedure involves assuming a randomly chosen initial position and

velocity for each of a set of trial dark matter particles within the given

potential, then calculating the orbit followed by each particle. The density

distribution which results from each particle following the calculated orbit is

then determined. A set of linear equations is solved to calculate the weight

to be given to each of the trial particles in order to reproduce the original,

assumed mass density distribution. The dark matter particle initial positions

and velocities are distributed along these orbits. For these studies we use a

total of 50,000 initial orbits, and several million dark matter particles (see

Table 3.2). We utilize a software package called SMILE from Vasiliev (2012

[73]), for carrying out the Schwarzschild procedure, and we find it to be

very successful at generating stable triaxial halos. A computationally more

efficient method has recently been proposed by Yurin and Springel (2014

[81]), but we have not yet evaluated this.

• We choose the parameters specifying the cluster baryon fraction (gas fraction)

and the gas density profile.
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• Given the potential profile and the gas density profile, we calculate the gas

temperature profile using Equation 3.5.

• After each cluster is generated, we rotate it to an assumed orientation, spec-

ified by a total of six Euler angles, three for each cluster.

This procedure does involve an approximation, since the cluster gravitational po-

tential is assumed set by the dark matter halo, whereas the cluster also contains

a significant amount of baryonic matter. In principle, we could iterate the pro-

cedure, calculating the potential due to the combined dark matter and baryonic

mass distribution. However, since the shape of the baryonic matter distribution is

not too different from the shape of the dark matter distribution (see Figure 4.5A),

we find that it is sufficient to use the shape of the potential determined by the

dark matter profile, but use the full cluster mass (dark matter + baryons) to set

the magnitude of the potential. Because the mass distribution profiles are similar,

and the cluster mass is dominated by the dark matter, the error involved in this

assumption is small and this procedure gives stable clusters. We demonstrate the

stability of clusters created by this procedure in Figures 3.3 and 3.4, which show

that a representative cluster is stable on a gigayear timescale. Figure 3.3 shows

the stability of the cluster shape, and Figure 3.4 shows the stability of the cluster

profiles.
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Figure 3.3: Shape stability of a triaxial cluster with P = 0.35 and Q = 0.70
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Figure 3.4: Profile stability of a triaxial cluster with P = 0.35 and Q = 0.70. Note

that the temperatures plotted are effective temperatures, as discussed in Sections

3.3.1.7 and 4.1.3

3.3.1.5 Initial Positions and Velocities

The two initial triaxial clusters are assumed to fall in from infinity on a near-

radial trajectory. We begin the simulation when the virial radii of the two clusters

make contact. Figure 3.5 shows a density slice near the beginning of the simulation.

The initial velocities are controlled by two free parameters: the initial impact

parameter of the two cluster mass centroids and a radial velocity percent increment

over and above the velocity acquired while free-falling from infinite separation.

These are referred to as IP and Vinc respectively in Table 3.3. We find the best fit

value of Vinc to be about 10 percent less than unity, indicating that the clusters

were initially bound, and also showing that large initial velocities are not required
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to reproduce the observations.

Figure 3.5: This graph shows a typical baryon density slice near the beginning of

the simulation. The black boxes show the initial mesh distribution. The size of

the region shown is 12.0 x 6.0 Mpc.

3.3.1.6 Magnetic Field

We set the initial magnetic field configuration of the two clusters as follows:

• We generate each of the three components of the Fourier-transformed B-

fields B̂x, B̂y, B̂z as a Gaussian random field with a Kolmogorov spectrum

(B̂i ∝ k−5/3). The minimum and maximum possible k values for the initial

random field configuration are given by:

kmax =
2π

L
∗ N

2
kmin = kmax/4, (3.6)

where L is the box length, which is 6 Mpc in these simulations, and N is

the number of cells in the x-direction of the largest (coarsest) grid, which is
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128. Due to the adaptive mesh refined MHD, turbulence on smaller scales

is generated as the simulation progresses. An important physical question is

what maximum coherence length characterizes the initial field configuration.

Only a few values have been tried in this first analysis. The best of them

is presented here; it has an initial maximum coherence length equal to four

times the initial coarsest grid spacing, i.e., about 180 kpc. Future work

will explore how well the B-field configuration can be constrained, but this

must be done in conjunction with developing a physical understanding the

non-thermal pressure, discussed in the next section.

• We clean the divergence in k-space by forcing k · B̂ = 0.

• We then Fourier transform the B-field components back to real space. All of

the above steps are performed with the aid of the GarFields software package

(Kitaura 2008 [74]).

• This generates a B-field of uniform magnitude throughout the simulation

volume, whereas we expect the field to be stronger in regions of higher plasma

density. In a simple collapse model of a magnetized sphere, the density scales

as 1/r3 and the magnetic field scales as 1/r2. We therefore scale the initial

B-field magnitude so that |B| ∝ ρ
2/3
gas . Note that the scaling factor is applied

after the two clusters are combined into a single simulation file, so the same

scaling factor (relationship between |B| and ρgas) is used for both clusters.

This spatial scaling of the uniform Kolmogorov B-field introduces a slight

non-zero value of ∇·B. We have verified that, because the length scale of the

plasma density variation is much longer than the scale of B-field fluctuations,

removing this ∇ · B has negligible impact on the simulations, so we do not
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do this routinely. Quantitatively, |∇ ·B|/|B| has a value of between 10−3 and

10−4 kpc−1, and this value is basically unchanged by cleaning the divergence,

indicating that this quantity is probably limited by discretization errors.

The only fitting parameter associated with the initial magnetic field configura-

tion is thus an overall scale for the field magnitude, referred to as Mag in Table

3.3. This parameter is the peak magnetic field magnitude in the region of highest

density in the initial configuration, which proves to be at the center of the bullet

cluster.

3.3.1.7 Non-Thermal Pressure

In this simulation study we have attempted to calculate as many of the observ-

ables as possible from first principles, minimizing the number of “fudge factors”.

However, we do find it necessary to include such an adjustable parameter to ade-

quately describe the non-thermal pressure. The source of this non-thermal pressure

is currently unknown, although turbulent fluid motions and/or cosmic ray pressure

appear to be the most likely explanations. Thus, following Bode (2012 [82]), we

phenomenologically incorporate non-thermal pressure into this simulation using a

single, space- and time-independent parameter, fntp, as follows:

Ptot = Pth + Pntp = Pth(1 +
fntp

1− fntp

) = Pth
1

1− fntp

. (3.7)

In effect, the simulation is performed with an effective temperature which is

higher than the actual temperature in order to account for the increased pressure,

then the effective temperature is reduced by the scaling factor when calculating

X-ray flux and the associated plasma cooling. This is a relatively primitive way
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of including non-thermal pressure and will be improved in future work. Further

discussion can be found in Section 4.1.3 where the predictions from the simulation

are discussed, and Section 4.5, where we discuss potential improvements to this

model.

3.3.1.8 Other Fitting Parameters

The remaining fitting parameters are:

− The metallicity parameter Z (defined as a fraction of solar metallicity), which

controls both the rate of cooling and the plasma X-ray emission, as discussed

in Section 3.3.2.2

− The viscosity parameter, Visc, which adds a viscosity as a fraction of Spitzer

viscosity.

3.3.2 Calculation of Observables

In order to compare the simulation to the observables, we need to calculate the

observables that result from a given set of initial conditions. This section describes

the procedures used to calculate the observables from the simulation variables.

3.3.2.1 Lensing Mass

Calculation of the lensing mass for comparison to the lensing data is straight-

forward. The baryon mass is a conserved quantity in the simulation, while the

dark matter consists of discrete particles of fixed mass. We sum the dark matter

and baryon mass separately along the line of sight for each pixel, then add the two

together to give the total lensing mass. From the standpoint of this calculation,
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stars are indistinguishable from dark matter. This should be a good approximation

because the stellar mass accounts for only a few percent of the total baryonic mass

in extremely massive clusters (Gonzalez 2013 [24]).

3.3.2.2 Calculation of X-ray Flux

The temperature range of the gas in galaxy clusters is typically in the keV

range. At these temperatures, thermal bremsstrahlung is the largest component

of the X-ray flux. In early work, we assumed that the X-rays were only generated

through thermal bremsstrahlung, and we review the method for performing those

calculations. The X-ray luminosity (energy emitted per unit volume per unit time

per unit frequency interval) is given by: (Rybicki and Lightman 2004 [83])

dW

dVdtdν
=

32πe6

3mec3

√
2π

3mekBT
Z2nenie

− hν
kBT (3.8)

dW

dVdtdω
=

16

3

e2

~c
~c

e4

m2
ec4

mec

√
2π

3mekBT
Z2nenie

− ~ω
kBT (3.9)

dW

dVdtdω
=

16

3

√
2π

3
αr2

e~c

√
mec2

kBT
Z2nenie

− ~ω
kBT (3.10)

Where α is the fine struture constant and re is the classical electron radius.

The total energy emitted is obtained by integrating this over all frequencies:

dW

dVdt
=

16

3

√
2π

3
αr2

e~c

√
mec2

kBT
Z2neni

∫ ∞
0

e
− ~ω

kBT dω =
16

3

√
2π

3
αr2

ec
√

mec2kBTZ2neni

(3.11)

The total X-ray emission is proportional to neni
√
T , as is well known. This

√
T

behavior is commonly used to calculate the X-ray emission from the plasma, but

it is only correct to do so if all of the energy emitted is observed, which is not
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the case here. Also, in the Chandra data we are counting photons, so we need to

convert this to the number of photons emitted per unit volume per unit time per

unit energy bin, which is:

dN

dVdtdE
=

16

3

√
2π

3

αr2
ec

E

√
mec2

kBT
Z2nenie

− E
kBT (3.12)

Now since we compare to photons in a given energy bin, we need to integrate over

the energies being collected, where Emin and Emax are the minimum and maximum

energies at the detector, which of course have been redshifted from their emission.

Doing this gives the following expression(note that z is the redshift and Z is the

mean atomic number), where E1 is the exponential integral

E1(ξ) =

∫ ∞
1

e−ξtdt

t
(3.13)

dN

dVdt
=

16

3

√
2π

3
αr2

ec

√
mec2

kBT
Z2neni(E1(

Emin(1 + z)

kBT
)− E1(

Emax(1 + z)

kBT
)) (3.14)

For the temperatures and energies applicable for the bullet cluster collision, this

has a very different functional form from the
√
T behavior, and is nearly flat with

temperature. One final adjustment is the addition of the Gaunt factor, which

is a quantum mechanical correction to the classical bremsstrahlung. Tabulated

Gaunt factors (see for example Itoh, 2002 [84]) for astrophysical plasmas at these

temperatures are in the range of 1.2-1.4. After adding the Gaunt factor, the

calculated X-ray luminosity is given by the following equation, and plotted in
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Figure 3.6.

dN

dVdt
= GF

16

3

√
2π

3
αr2

ec

√
mec2

kBT
Z2neni(E1(

Emin(1 + z)

kBT
)− E1(

Emax(1 + z)

kBT
))

(3.15)
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Figure 3.6: This shows the calculated emissivity in photons/(cm3s) due to thermal

bremsstrahlung for a plasma with temperature given on the X-axis. The green

curve is the total emissivity at all energies, which has a
√

T dependence. The blue

and red curves show the emissivity between 500 eV and 6000 eV, which corresponds

to the Chandra sensitivity. The red curve has a Gaunt factor of 1.0, and the blue

curve has a Gaunt factor of 1.4. The blue points are the emissivity calculated

using the APEC code [69], which includes all emission, not just bremsstrahlung.

The blue curve with a Gaunt factor of 1.4 (Equation 3.15) is a good fit to the total

emission for plasma temperatures above a few keV.

While the assumption of bremsstrahlung only is seen to be a good assumption at

higher temperatures, Figure 3.6 shows that it signifcantly underpredicts the plasma

emissivity at lower temperatures. To improve the accuracy of the simulation,
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we modified the code to include both thermal bremsstrahlung and line emission,

which is a complex function of temperature and metallicity. To do this, we use

the APEC code (Frusciaone 2006 [69]) to build a look-up table of the plasma

emissivity in each energy bin (with the energy bin limits blue-shifted back to the

source appropriately) as a function of temperature and metallicity; the resulting

emissivity is shown in Figure 3.7. Since the plasma is optically thin, we calculate

the total flux by summing the flux from each volume element along the line of sight.

As discussed above, the calibrated Chandra data is the flux of X-ray photons in

photons/(cm2sec) in the given band of energies.

Figure 3.7: Plasma emissivity in photons/cm3/s/(n2
p) where np is the plasma mass

density, as calculated using the APEC code for different metallicity choices. The

metallicity Z is given as a fraction of solar. The left, center, and right plots

are for energy bins of 500eV - 2000eV, 2000eV - 5000eV, and 5000eV - 8000eV,

respectively.

We use the same calculation of plasma emissivity to calculate the rate of gas
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cooling during the simulation by building a look-up table that gives the cooling rate

as a function of temperature and metallicity. This is done by slightly modifying

the Enzo code to use this look-up table instead of the built-in cooling calculation.

Because emission at all energies contribute to the plasma cooling, we sum the

X-ray emissivity across all energies for this cooling calculation.

3.3.2.3 Plasma Temperature

Calculation of a 2D map of the plasma temperature to compare to observed

temperatures is not trivial, since both the plasma density and the plasma tem-

perature vary along the line of sight. Obseravtional determination of the plasma

temperature is a difficult problem (Vikhlinin 2005 [23]; Govoni 2004 [85]; Nagai

2007 [86]). In principle a spectroscopic temperature should be used (Mazzotta 2004

[87]), where the X-ray flux is integrated along the line of sight, and the resulting

spectrum fit with a temperature for each pixel, but this is computationally expen-

sive. We find that an X-ray emission weighted temperature gives almost the same

result, and is much faster, so we use this procedure to produce the temperature

maps (for example, Figure 4.8A). In other words, we calculate the temperature in

each pixel by

T =

∫ ζmax

ζmin
T(ζ) ∗ ε(np(ζ),T(ζ),Z)dζ∫ ζmax

ζmin
ε(np(ζ),T(ζ),Z)dζ

, (3.16)

where the integration is along the line of sight, ζmin, ζmax are the boundaries of the

simulation volume, and the plasma emissivity ε(np,T,Z) is calculated as described

above. We use Emin and Emax values of 500 eV and 8000 eV for this purpose. We

emphasize that these temperature maps are not used for optimization or calculation

of χ2, but only for comparison purposes.

52



3.3.2.4 Calculation of S-Z Effect

Inverse Compton scattering of CMB photons by the hot plasma leads to a

distortion of the CMB blackbody spectrum. A good approximation for optically

thin, non-relativistic plasmas such as these is that the distortion results in a slight

modification of the CMB temperature as given by the following equation [88]:

∆T

TCMB

= −2σT

∫
kBT(ζ)

mec2
ne(ζ)dζ. (3.17)

Here the integration is along the line of sight, and σT is the Thomson scattering

cross section. Since the X-ray flux is proportional to n2
e and is relatively indepen-

dent of T, and the SZE ∆T is proportional to neT, the two datasets together allow

an independent determination of plasma density and temperature. For the Bullet

Cluster, the S-Z effect has a maximum ∆T of approximately 400µK.

3.3.2.5 Radio Halo

Galaxy clusters, especially those undergoing violent collisions, are known to

have extended radio halos. The source of the radio emission is less well under-

stood than the source of the X-ray emission, but is believed to be a population of

relativistic electrons which emit synchrotron radiation as they spiral around the

cluster magnetic field lines (Govoni 2004 [89]; Liang 2002 [90]; vanWeeren 2011

[91]). Following closely Rybicki and Lightman (2004 [83]), we use the following

model:

• The population of relativistic electrons follows a power law distribution (we

assume p > 2):

N(γ)dγ = Cγ−pdγ. (3.18)
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• The population of relativistic electrons is in equipartition with the magnetic

field, meaning that: ∫ ∞
0

γmec
2Cγ−pdγ =

B2

8π
. (3.19)

This implies:

C =
(p− 2)B2

8πmec2
. (3.20)

With these assumptions, the intensity of radio emission depends only on the

magnetic field intensity B and the power law exponent p, which we assume constant

throughout the simulation volume. After averaging over the randomly oriented

direction of the magnetic field, the radio power is given by:

P(ν)dν =

√
3π

32π2(1 + z)

e3B3

(mec2)2
f(p) (

2πmecν(1 + z)

3eB
)−(p−1)/2dν, (3.21)

where the function f(p) is given by the following expression:

f(p) =
(p− 2)

(p+ 1)

Γ(p+5
4

)

Γ(p+7
4

)
Γ(
p

4
+

19

12
)Γ(

p

4
− 1

12
); (3.22)

f(p) ≈ 0.3 for typical values of p (2.5 < p < 4.0). For comparing to observations,

it is important to note that the spectral index of the electron energy, p, (Equation

3.18) is related to the spectral index of radio emission, s,

f(ν)dν = Cν−sdν, (3.23)

by the following equation [83]:

s =
p− 1

2
. (3.24)
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We find the power law exponent to be tightly constrained to a value of p ≈ 3.6,

as discussed in Section 4.1.4.

3.3.2.6 Calculation of Rotation Measure

Electromagnetic radiation propagating through an ionized plasma experiences

a rotation of the plane of polarization, an effect known as Faraday rotation. The

amount of rotation is proportional to the electron density times the component of

magnetic field parallel with the direction of propagation, as follows (Rybicki and

Lightman 2004 [83]):

∆θ =
e3λ2

2π(mec2)2

∫ ζmax

ζmin

ne(ζ) ∗ B||(ζ)dζ, (3.25)

where the integration is along the line of sight, and ζmin, ζmax are the boundaries

of the simulation volume. It is usual to define the Rotation Measure, with units of

radians/m2 as:

RM =
∆θ

λ2
, (3.26)

so that:

RM =
e3

2π(mec2)2

∫ ζmax

ζmin

ne(ζ) ∗ B||(ζ)dζ, (3.27)

This is used in generating Figure 4.13.

3.3.3 Optimization Procedure

For a given choice of parameters, we build the appropriate initial clusters and

simulate the collision process using the Enzo simulator as described in the preced-

ing sections. As the simulation progresses, the full state of the system is recorded
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at time steps of 0.01 Gy in the relevant range of time. The simulation is run in

a frame with the initial cluster velocities in the x-direction, and the initial impact

parameter in the y-direction, so there are two angular variables (θobs, ψobs) which

determine how our viewing angle is related to the simulation coordinates. For each

time value T, a search is run through these viewing angles and the observables are

calculated as described in Section 3.3.2. This generates a set of 2D images (one

for each observable) for each set of values (T, θobs, ψobs). These then need to be

aligned to the observations in the plane of the sky, requiring three more variables

(∆X,∆Y, φobs). The values of (∆X,∆Y, φobs, θobs, ψobs) which minimize the calcu-

lated χ2 value are determined for each value of T. (After the initial conditions are

approximately determined, this entire procedure only needs to be carried out for

a limited time-range.) Figure 3.8 shows the typical evolution of the χ2 parameter

through simulation time. The observations are best described after approximately

0.85 Gy have elapsed since the beginning of the simulation. The time of closest

approach of the mass centroids is at 0.73 Gy after the start of the simulation, so

approximately 120 My have elapsed since the time of closest approach.
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Figure 3.8: Typical evolution of the χ2 parameter (for the best fit viewing angle

and position in the plane of the sky) as the simulation progresses.

We run simulations exploring the space of initial conditions and other param-

eters to find those which minimize the χ2 parameter. These simulations are run

on the NASA Pleiades supercomputer cluster, with each simulation running for

about 8 hours of wall clock time. About 10% of this time is in setting up the

initial conditions and analyzing the result. The remainder is spent in running the

Enzo simulation, typically using 64 CPUs. The space of possible initial conditions

is too large to carry out a fully systematized parameter optimization procedure,

such as performing a Markov-Chain-Monte-Carlo. Instead, Monte-Carlo searches

are run within generously selected ranges of parameters, with steepest-descent op-

timizations to find the locally-best fits for several of the best points in parameter

space, supplemented by judicious by-hand exploration of parameter space to make

sure no minima are overlooked. No sampling procedure can absolutely guarantee

one is near the global rather than just a local minimum for χ2, the strong con-

straints the data imposes make it likely that the best-fit initial conditions reported
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here are close to a global optimum, for the adopted model treatment. In all, more

than 1000 simulations were run in order to find the best fit initial conditions and

their uncertainties given in Table 3.3.

There is some degree of decoupling in the parameter space. The mass lensing

projection is primarily determined by the dark matter distribution, and hence is

mostly determined by the shapes and orientations of the dark matter halos, which

are controlled by the parameters labeled “Dark Matter Halo Parameters” and

“Orbital Geometry Parameters” in Table 3.3. To most efficiently find the global

minimum, the optimization strategy we follow is first to optimize these parameters

with a χ2 calculated only from the mass lensing data, then optimize the remaining

parameters with a χ2 calculated from both the mass lensing data and the lowest

energy X-ray flux, and finally to optimize on the full parameter set with a χ2

calculated from both the mass lensing data and the X-ray flux data.

3.3.4 Statistics

To estimate the uncertainty associated with the parameters determined from

the optimization, one would ideally perform a Markov Chain Monte Carlo (MCMC)

analysis of the simulation model in the multi-dimensional space of initial condi-

tions. However, the minimal such MCMC analysis for a system such as ours

involves running tens or hundreds of thousands of trials, and the simulation is too

computationally expensive to allow this. The strategy we use is to run a smaller

number of trials, build an approximate model of χ2 in the multi-dimensional pa-

rameter space, then characterize the parameter distributions using this model.

This procedure is described in more detail in Blizniouk, et.al. (2008 [92]), where it

is shown to give distributions similar to that which result from running an MCMC
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analysis on the original computationally expensive simulation.

Simulations are run using a range of initial conditions, and a χ2 value is cal-

culated for each. Some of these simulation runs (approximately 700) are part of

the χ2-minimization runs, and some (approximately 300) are run with intention-

ally varied parameters in order to span the space of input parameters. Many of

these simulations are run with the lower resolution conditions described in Section

4.3. We then use the results of these simulation runs to build a multi-dimensional

cubic-spline Radial Basis Function (RBF) model of χ2 as a function of the input

parameters. This RBF model fits the simulated points exactly, and varies smoothly

as one moves away from the simulated points.

Figure 3.9 shows plots of the RBF model as two typical parameters move away

from the optimum point with all other parameters held fixed. The RBF model,

which is computationally easy to evaluate, is then used to estimate the uncertain-

ties of the parameters, defined so that the region within 1-sigma on either side

of the best-fit value of a given parameter contains 34% of the probability density

after marginalizing over all other parameters. The sigma values which result are

tabulated in Table 3.3.
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Figure 3.9: Behavior of the Radial Basis Function model as two representative pa-

rameters M2(Bullet Cluster mass) and GF1(Main Cluster gas fraction) are varied

around the optimum point, with all other parameters held fixed. The RBF model

is the black lines, and the actual simulations are the red circles.
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Chapter 4

Results and Major Findings

This section discusses the major results of our study. We first compare the

best-fit simulation to the observables, then discuss the cosmological implications,

then discuss some initial work toward improving the simulation.

4.1 Comparison of Best Fit Simulation to Obser-

vations

Following the procedures in the preceding sections leads to the best fit initial

conditions summarized in Table 3.3. This section discusses a series of images

which exemplify the fit between the optimized simulation and the observations.

We begin with results which are governed mainly by the initial conditions on the

dark matter and the constraints from mass-lensing data. Then we turn to the more

“gastrophysics”-dependent aspects.
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4.1.1 Mass Lensing

Figure 4.1A shows the predicted mass-lensing map when parameters are op-

timized using χ2 calculated only from the mass lensing data, showing that the

model is quite successful at reproducing the mass lensing distributions. The initial

cluster triaxiality reproduces the shapes of the clusters quite well, and the value of

χ2 = 1.15 obtained shows a good fit to the observations. For comparison, Figure

4.1B shows the fit of the same simulation with a χ2 calculated from both the mass

lensing data and the lowest energy X-ray flux. Since Figure 4.1A and Figure 4.1B

are from the same simulation (using the parameters in Table 3.3), only the align-

ment to the observational data is different between these two figures. The value

of χ2 = 2.04 obtained in Figure 4.1B shows that the quality of the fit using only

mass lensing data is degraded slightly when the alignment is chosen to give the

best simultaneous fit including the X-ray flux as described below.
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Figure 4.1: Mass lensing fit between the data and the simulation. In each of these

plots, the measured data is in the upper left and the simulated result, on the same

scale, is in the upper right. The lower left shows an overlay of the measured data

and the simulation, with the simulation shown as black contour lines, and the

lower right shows the measured data and simulation along a line through the 2D

data planes chosen to pass approximately through the measured peaks; this slice

is shown as a dotted white line in the lower left.

Figure 4.1.1 shows the collision as viewed from our perspective, and is intended

to help visualize the orientations of the cluster ellipsoids. The best-fit relative

velocity vector between the bullet cluster and the main cluster is inclined approx-

imately 10 degrees to the plane of the sky. This best fit radial velocity has the

bullet cluster dark matter centroid receding from us at 837 km/sec relative to the

main cluster dark matter centroid. This is to be compared with the radial velocity

analysis of Barrena, et.al.(2002 [93]), who found that the bullet subcluster galaxies
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have a velocity offset of 616 ± 80 km/sec relative to the main cluster galaxies in

the main cluster’s rest frame. Our simulation makes a prediction for the distribu-

tion of velocities and their variances as a function of position in the sky, so a more

detailed comparison to the current full dataset is warranted to determine whether

the discrepancy (about 2.7σ with the Barrena et.al. errors) is significant.

Figure 4.2: The path of the collision, as seen in the plane of the sky, illustrating

the initial orientations of the two ellipsoids. The red dots indicate the path of the

dark matter centroids.

4.1.2 X-ray Flux

Simultaneously fitting the mass lensing data and the X-ray flux data is more

difficult than fitting the mass lensing alone, which is not surprising given the

complexity of the baryonic physics and possible systematic errors in the mass

lensing reconstruction. Figures 4.3A - 4.3C show the fit to the X-ray fluxes in the
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three different energy bins. Figure 4.4A shows the X-ray flux from different slices

through the system, on a log scale, and Figure 4.4B shows the location of the shock;

these two plots are intended to show how well we have captured the location and

shape of the shock. The fit is reasonable, and in particular Figure 4.4A shows that

the X-ray flux is well modelled over more than 2 orders of magnitude. However,

the χ2 calculated only from the lowest energy X-ray data has a value of 5.68, so

this fit is not nearly as good as the mass lensing fit.
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Figure 4.3: Best fit result for the X-ray flux.
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Figure 4.4: Best fit result for the X-ray flux in the range of 500-2000 eV. The left

hand plot has slices on a log scale at three different angles. The right hand plot

uses an edge detection algorithm to capture the location of the shock. These two

plots show that the shock location and shape are reasonably well captured.

The X-ray flux morphologies are found to be quite sensitive to the details of

the initial baryon distributions, and the initial distributions which give the best fit

are shown in Figure 4.5A. It is important to note that the temperatures plotted

here are effective temperatures including the effects of non-thermal pressure, and

are therefore higher than the true temperatures, as discussed in Sections 3.3.1.7

and 4.1.3. To see whether our profiles are reasonable, we turn to the extensive

measurements of single galaxy clusters which have been done, including McCourt

et.al. (2012 [94]), Leccardi and Molendi (2008 [33]), and Simionescu et.al. (2011

[95]). Figure 4.5B shows measured results of cluster temperature profiles from

Leccardi and Molendi, which are seen to be qualitatively similar to our initial

temperature profiles.
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Figure 4.5: Initial best-fit baryon profiles of the two clusters, and comparison of

our initial temperature profiles to a large sample of X-ray clusters. Figure (B) is

reproduced from Leccardi and Molendi [33]; TM is the mean cluster temperature

outside 0.1 R180. Black points are the sample mean and the dotted lines are the

one σ scatter. Our initial temperature profiles are qualitatively similar.

4.1.3 S-Z Effect, Plasma Temperature, and Non-Thermal

Pressure

As discussed in Section 3.3.1.7, we find it necessary to explicitly include a fudge-

factor to account for effects of non-thermal pressure in order to correctly describe

some datasets. We describe the non-thermal pressure with a single parameter

fntp which we take to be constant in space and time. Not including non-thermal

pressure in the simulation has a minor impact on the X-ray flux in the 0.5-2 keV

band used to constrain the parameters (see Figure 4.6), but leads to temperature

and S-Z effect comparisons which are far out of agreement with the observations.
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Figure 4.7A shows the S-Z effect data. Its sensitivity to the non-thermal pres-

sure is shown in Figure 4.7B. The overall structure of the S-Z observations is

well-matched, but clearly the normalization cannot be predicted with accuracy

until non-thermal pressure is treated better. The offset between predicted and ob-

served emission peaks is similar to the net offset between predicted and observed

peaks in X-ray and mass lensing peaks; whether any significance can be attached

to that is under study.

Figure 4.8A shows the predicted plasma temperature averaged along the line

of sight in each pixel, which is compared to the map extracted from the X-ray

measurements by M. Markevitch using the procedure described in (Markevitch

2000 [96]) and kindly provided to us. The temperature uncertainty is said to have

a median value of 1.5 keV [private communication, 2011], but note that the ex-

tracted temperature along a given line of sight is susceptible to large variations

due to Poisson statistics in the high-energy X-ray band with the result that the

observational map contains a great deal of noise. Therefore, only large-scale fea-

tures should be compared to the predictions. On the simulation side, non-thermal

pressure is important for the high-energy X-ray band, and thus the overall scale of

the temperature map is uncertain, as seen in Figure 4.8B showing the sensitivity

of the temperature map to the non-thermal pressure. Nonetheless, the qualitative

features of hot, low density gas leading a dense cold core are clear in the predic-

tions and also visible as a general pattern underlying the noise in the extracted

temperature map.

Going forward, it is clear that treating the non-thermal pressure as a constant

ratio relative to the thermal pressure is too simplistic and we plan to improve our

treatment, as will be discussed in Section 4.5.
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Figure 4.6: Impact of the non-thermal pressure on the X-ray flux from 500-2000

eV.
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Figure 4.7: Fit results for the S-Z temperature decrement, with and without the

impact of non-thermal pressure. The contour plot color saturation in Figure (b)

results from ensuring all plots are on the same scale.
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Figure 4.8: Fit results for the plasma temperature with and without the impact

of non-thermal pressure. The contour plot color saturation in Figure (b) results

from ensuring all plots are on the same scale.

4.1.4 Role of Magnetic Field and Radio Halo Prediction

As noted above, it is non-trivial to accurately match the mass lensing recon-

struction while simultaneously accurately reproducing the X-ray flux morphology.

The inclusion of magnetic fields is important for achieving a good description. Fig-

ure 4.9 shows that, given a good fit to the mass lensing distributions, the baryon

density peaks (and their associated X-ray flux peaks) without the magnetic field

tend to be “ahead” of their observed locations. This requires some added pressure

on the baryons in order to retard the motion of the baryon density peaks to agree

with the observations. We have achieved this with a combination of increased

magnetic field and added viscosity, both of which retard the motion of the baryon

peaks. Attempts to achieve alignment of the various peaks with only the addition
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of the magnetic field are not successful, and the addition of the viscosity term is

required. Even with these components added, however, the reproduction of the

shapes of the regions of high X-ray flux (see Figures 4.3A - 4.3C), while close, is

still not completely accurate.

While the best-fit magnetic field found here does not play a dominant dynam-

ical role, the details of the initial magnetic field distribution (see Section 3.3.1.6)

do impact the X-ray flux results. To further explore whether the magnetic fields

found here are reasonable, we calculated the radio halo emission, and compared

this to the measurements of Liang et.al. (2000 [71]). As detailed in Section 3.3.2.5,

we use a simple model where a population of relativistic electrons is taken to be in

equipartition with the magnetic field. This population follows a power law distri-

bution with power law exponent p (see Equation 3.18), and produces a radio flux

with spectral index s (see Equation 3.23), where p and s are related by Equation

3.24. Figure 4.10 shows the fit to the radio halo data using a typical magnetic

field as determined from the collision dynamics; it is to be emphasized that since

the initial B-field is randomly generated, a detailed fit is not the goal: reproducing

the general magnitude and location of the radio emissions is the best that can be

expected. The value of the power law exponent p is fairly tightly constrained to a

value of p ∼ 3.6, as seen in Figure 4.11, which shows that this value is needed in

order to reproduce the magnitude of the observed radio emissions. This predicts a

value of radio emission spectral index s ∼ 1.3, which is encouragingly close to the

value of 1.2-1.3 measured by Liang.

71



500

0

500

kp
c

Data Simulation

10.0

9.2

8.5

7.7

7.0

6.2

5.5

4.7

4.0

500 0 500
kpc

500

0

500

kp
c

500 0 500
kpc

0

1

2

3

Data

Sim

X-ray Flux - 500-2000eV, T = 0.87 Gy

A Mag = 61µG.

500

0

500

kp
c

Data Simulation

10.0

9.2

8.5

7.7

7.0

6.2

5.5

4.7

4.0

500 0 500
kpc

500

0

500

kp
c

500 0 500
kpc

0

1

2

3

Data

Sim

X-ray Flux - 500-2000eV, T = 0.90 Gy

B Mag = 0.01µG.

Figure 4.9: Impact of magnetic field on the X-ray flux in the range of 500-2000

eV. The magnetic field pressure impacts the location of the X-ray peaks.
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Figure 4.10: Predicted radio flux, as compared to observations by Liang, et. al.[71]

The subpanels of each plot are as described in Figure 4.1A.
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Figure 4.11: Impact of the spectral index parameter p. A value of p=3.6 best

captures the magnitude of the radio halo flux. The contour plot color saturation

in Figure (a) results from ensuring all plots are on the same scale.

Figure 4.12 shows the magnetic field amplification which takes place during

the collision. The peak magnetic field increases from ≈ 60µG at the beginning

of the collision to ≈ 80µG at the time of observation. These magnetic fields

seem quite high, and have been called into question by several researchers. To see

whether these values are reasonable, we calculated the Rotation Measure (RM)

that would result from these values and compared them to measured galaxy clus-

ters, as shown in Figure 4.13. While the RM values predicted for the Bullet Cluster

are large, there exist other measured clusters with RM values on the order of 10,000

radians/m2. Thus, it appears that the large simulated values of magnetic field that

we find are reasonable. RM measurements of the Bullet Cluster would be invalu-
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able in resolving this situation. The fact that the value of magnetic field which

is required to give the proper alignment of the X-ray intensity peaks is consistent

with the radio halo emission lends confidence to the model. Future work will ex-

plore this further to see if modifications of the initial B-field or improvements to

the radio emission model (Section 3.3.2.5) can improve this fit further.

A Near the beginning of the simulation. B At the time of observation.

Figure 4.12: Top panel: log(baryon density in g/cm3) plotted in color; dark matter

density overlaid in white contours. Middle panel: log(gas temperature in keV).

Bottom panel: log(|B|) in Gauss.
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A Simulated Rotation Measure (radians/m2). B Measured RM from Carilli and Taylor (2002

[57])

Figure 4.13: Simulated Rotation Measure as compared to Measured Clusters

4.1.5 Summary of Best Fit Results

Although the fits we have obtained are good and they are a considerable im-

provement over earlier attempts (see Section 4.2), it is clear that they could be

improved. Figure 4.14 shows the contributions to the total χ2 value (i.e. the resid-

uals) over the 2D simulation plane, allowing the regions where the fit is poorest to

be identified.
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Figure 4.14: The χ2 value calculated for each dataset alone, with the location of

the regions of poorest fit (i.e. the residuals) over the 2D simulation plane shown

in the colored contours.

4.2 Comparison to Past Simulation Studies

We can compare the quality of the fit achieved here to that of the earlier

simulation studies of Springel and Farrar (2007 [8]) and Mastropietro and Burkert

(2008 [9]). As noted in the Introduction, those studies took a different approach

of trying to fit some key separations between features, and did not explore such

a large range of initial conditions as we have done. Nonetheless, we can use the

initial conditions reported in those papers in our simulation, and compare to the

observations using our techniques. The value of the figure-of-merit parameter χ2

calculated from mass lensing and the lowest energy X-ray data is 3.92 for our best
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fit initial conditions, 13.67 for Springel and Farrar, and 19.93 for Mastropietro

and Burkert. This shows the clear improvement in fitting the data that we have

achieved.
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Figure 4.15: Mass lensing fits as compared to past simulation work. χ2 calculated

from mass lensing and lowest energy X-ray data as described in the text is 3.92 in

this work, 13.67 for Springel and Farrar, and 19.93 for Mastropietro and Burkert.
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Figure 4.16: Lowest energy X-ray fits as compared to past simulation work. χ2

calculated from mass lensing and lowest energy X-ray data as described in the text

is 3.92 in this work, 13.67 for Springel and Farrar, and 19.93 for Mastropietro and

Burkert.

4.3 Resolution Study

To verify that the simulations are of sufficiently high resolution to capture the

main features of the cluster collision, simulations using the optimal initial condi-

tions are run at higher and lower resolutions. For the lower resolution simulation,

the number of dark matter particles is reduced by a factor of four, and the mini-

mum grid size is increased by a factor of two. For the higher resolution simulation,

the number of dark matter particles is increased by a factor of two, and the min-

imum grid size is decreased by a factor of two. All of these values are relative

to the nominal values in Table 3.2. Figures 4.17 and 4.18 summarize the results.

While there are some slight changes, especially in resolving the right-hand X-ray

peak, the basic features of the simulation are unchanged, confirming that the main
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conclusions are not impacted by the resolution of the simulation.
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Figure 4.17: Impact of resolution on Mass Lensing fit
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Figure 4.18: Impact of resolution on X-ray intensity fit

4.4 Cosmological Comparisons

As discussed in Section 1.2, one of the goals of this study is to clarify the dis-

agreements on whether or not the cluster collision is consistent with the ΛCDM

standard cosmological model. The fit between the observations and our simulation

shown in the preceding section, while far from perfect, is remarkably good. The

physics incorporated into the simulations is conventional, and the assumed initial

conditions are generally quite reasonable as compared to known galaxy clusters.

We find that the Bullet Cluster collision is fully consistent with ΛCDM, as dis-

cussed in this section and in a companion paper (Lage and Farrar 2014 [97]).
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4.4.1 Cluster Initial Velocities

The two main simulation studies of the Bullet Cluster merger which were per-

formed prior to this work, that of Springel and Farrar [8] and Mastropietro and

Burkert [9], are discussed in Section 4.2. These studies constrain only a small num-

ber of extracted parameters, such as the location of the mass centroids and the

general shape of the X-ray flux maps. Our work is a more detailed study which

minimizes the chi-squared figure of merit between the two-dimensional observa-

tional data sets and the simulation. This technique greatly improves the accuracy

with which the simulation matches the observations, and motivates us to revisit

the question of consistency with ΛCDM. Table 4.1 shows a comparison of the

cluster masses, initial cluster separations and initial infall velocities found in the

various studies. To facilitate comparison, we also give a standardized initial infall

velocity calculated assuming that the clusters move as point masses on a ballistic

trajectory from their starting separation to a separation of 2500 kpc. Since there

is very little interaction between the clusters at separations larger than 2500 kpc,

assuming a ballistic trajectory of these widely separated clusters should be a very

good approximation. We have also included the simulation study of Milosavljevic

[10] in Table 4.1, although since it is a 2D axisymmetric simulation, it is not in the

same category as the other studies. We note that a more recent study by Dawson

[11] has also been performed, but since it did not include gas dynamics, it is not

tabulated here.

To estimate whether the initial velocities of these simulations are consistent

with a ΛCDM cosmology, we use an N-body simulation known as the Horizon Run

(Kim [18]). This is a large dark-matter-only simulation using 41203 = 6.99× 1010

particles, and covering a volume of (6.59Gpc/h)3. We analyze the data from this
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Authors MMain MBullet RInitial VInitial V2500

(M�) (M�) (kpc) (km/s) (km/s)
Lage & Farrar 1.91× 1015 2.59× 1014 2800 2799 2943
Springel & Farrar 1.50× 1015 1.50× 1014 3370 2057 2386
Mastropietro & Burkert 7.13× 1014 1.14× 1014 5000 3000 3228
Milosavljevic et. al. 1.27× 1015 2.54× 1014 4600 0 1546

Table 4.1: Comparison of initial infall velocities from different simulation studies.
For comparison, the last column gives a normalized initial infall velocity calculated
assuming that the clusters move as point masses on a ballistic trajectory from their
starting separation to a separation of 2500 kpc.

simulation in the following manner:

1. We start with the database of halos from the z = 0.5 snapshot. This database

contains the masses, locations, and velocities of approximately 1.1 million

halos. The z=0 and z=0.5 snapshots were available to us, and we used

the z=0.5 snapshot since it is close to the redshift at the beginning of the

simulation, which is approximately z=0.39.

2. For a range of target masses between 5×1014 M� and 2×1015 M�, we search

for a cluster within 10% of the target mass. A cluster meeting this criterion

is referred to as a main cluster analog.

3. For each of these “main” clusters, we search for a neighboring cluster within

a distance of 5 Mpc, with a mass between 6 times and 10 times less than

the main cluster analog. A cluster meeting these criteria is referred to as a

bullet cluster analog.

4. We extract the relative velocities of each pair of clusters, and convert to

the value at a separation of 2500 kpc, assuming that the clusters move as

point masses along ballistic trajectories from their current separation to a

separation of 2500 kpc.
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5. We also extract the total energy and impact parameter of these two clusters.

Figure 4.19 shows the initial infall velocities extracted in this way compared

to the above simulation studies. Since the main cluster mass is much larger than

the bullet cluster mass, we expect the initial infall velocities to be proportional

to
√

MMain, and this is just what is seen in Figure 4.19. The fit to the expected

∝ √MMain behavior improves at lower masses because there are many more clusters

and hence less stochastic variability. While there are 3309 cluster pairs whose main

cluster mass is 5×1014 M� ±10% there are only 7 cluster pairs at 2×1015 M� ±10%.

The parameters obtained in the simulation studies discussed above are also plotted

in Figure 4.19. We see that while the initial infall velocity from Mastropietro and

Burkert is approximately 5 standard deviations away from the mean, the best fit

initial infall velocity from this work is between 1 and 2 standard deviations above

the mean. The difference is driven by our results having both a smaller initial infall

velocity and a significantly larger main cluster mass than obtained by Mastropietro

and Burkert.

In Figure 4.20, we plot the total energy and impact parameter of pairs of clusters

extracted as described above, with main cluster mass of 2 × 1015 M� ± 30%, as

compared to our best fit simulation. It is seen that most cluster pairs in the Horizon

simulation are near zero total energy, and our best fit simulation falls comfortably

within the distribution.

4.4.2 Cluster Concentrations and Shapes

The concern that the Bullet Cluster is inconsistent with ΛCDM cosmology has

focused on the initial infall velocity of the colliding clusters, and we have shown

in the preceding section that this velocity is in fact not exceptional. However, it is
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Figure 4.19: Initial infall velocity of the bullet cluster relative to the main cluster
extracted from the z=0.5 snapshot of the Horizon simulation at a separation of
2500 kpc, using the analysis technique described in the text. The small circles
are the mean relative velocity, with 1 σ error bars. The thick solid line shows the
expected V ∝ √Mmain behavior. The three dotted lines are the V ∝ √Mmain curve
offset by 1, 2, and 3 σ, respectively.

also worthwhile to examine the consistency of the sizes and shapes of the colliding

clusters with observations and N-body simulations based on ΛCDM.

First, we examine the concentrations of the colliding clusters. Figure 4.21

shows the best fit masses and concentrations from our simulation as compared to

two observational studies. Figure 4.21(A) shows the comparison to the work of

Comerford [28]. While the bullet cluster is quite typical, the main cluster appears

to have an unusually low concentration for its mass. However, a more recent study

of Okabe [30], shown in Figure 4.21(B), has found a steeper slope for the Mass-

Concentration relationship (heavy dashed line in Figure 4.21(B)) which is more

consistent with our findings for the main cluster.
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Figure 4.20: Total Energy vs Impact Parameter of cluster pairs in the Horizon
Run having main cluster mass of 2× 1015 M� ± 30%. The large square represents
the best fit simulation from Lage and Farrar [14].
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Figure 4.21: Comparison of masses and concentrations from our best fit simulation

to measured mass-concentration relations. The dotted ellipses represent one-sigma

errors around the best fit simulation. In both plots, the bullet cluster is on the left

and the main cluster on the right.
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Using the axis ratios defined in Section 2.2.5, we compare our best fit axis ratios

to those of clusters extracted from N-body simulations. This is shown in Figure

4.22. Figure 4.22(A) shows our best fit axis ratios as compared to an N-body

simulation study by Bailin [55]. The bullet cluster is well within the population

of clusters, while the small axis ratio of 0.35 found for the main cluster appears

somewhat unusual. The more detailed study of Schneider, Frenk, and Cole [54],

shown in Figure 4.22(B), examines the trends of axis ratios as a function of cluster

mass and finds that more massive clusters tend to have smaller axis ratios, although

the large mass of the main cluster (nearly 2×1015 M�) is actually beyond the range

considered. The lower right panel of Figure 4.22(B) shows our best fit axis ratio

for the main cluster as compared to the largest masses studied, giving confidence

that our axis ratios are within the expected distributions.

4.4.3 Comparison to Universal Baryon Fraction

Another key point of comparison is the baryon fraction value, i.e. the fraction

of the total cluster mass made up of baryons. There is currently a great deal of

interest in this parameter, and it is not clear whether or not to expect the gas

fraction value in a galaxy cluster to match the universe-average values (Battaglia

2013 [98]; David 2012 [99]). In our work, the baryon fraction values (within R200)

of the initial clusters (parameters GF1 and GF2 in Table 3.3 - best fit values of

19±2% and 17±2%) differ the ΛCDM average value at the 1-2 sigma level. The

nine-year WMAP results (2013 [100]), for example, give a ratio of Ωb/Ωm of 16.5

±2.5%, while the recent Planck results (2013 [101]) give a ratio of Ωb/Ωm of 15.4

±0.5%. Further work is needed to determine whether the slightly higher baryon

fraction values we find are due to a deficiency of our modeling, such as missing sub-
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Figure 4.22: Comparison of our best fit axis ratios to those extracted from N-body
simulations.
Left-hand panel: Axis ratios of halos extracted from N-body simulations by Bailin
et.al.[55]. The dotted ellipses represent one-sigma errors around our best fit axis
ratios, with the main cluster on the left and the bullet cluster on the right.
Right-hand panel: Axis ratios of halos of different masses extracted from N-body
simulations by Schneider, Frenk, Cole [54], showing that more massive clusters have
smaller axis ratios. The numbers in parentheses are the mass ranges in log(M�),
with masses increasing from upper left to lower right. The dotted lines in the lower
right panel are our best fit axis ratios for the main cluster.

grid physics, or whether the baryon fraction in these clusters is actually enhanced

over the universe-average values. The prime driver in the overall gas fraction

normalizations is the X-ray luminosity, which ∼ n2, so including expected small-

scale inhomogenieties would plausibly result in lower baryon fractions, as well as

decrease the extracted metallicity which is presently somewhat high. In the next

phase of the work, a variety of refinements will be explored.
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4.5 Improved Modeling of Non-Thermal Pres-

sure

As we have shown in Section 4.1.3, modeling of the non-thermal pressure is

an absolute necessity in order to accurately model the S-Z signal and the plasma

temperature of the Bullet Cluster. To study this further, we have compared the

simulated vs measured temperatures of single galaxy clusters. As discussed in Sec-

tion 3.3.1.3, we build the initial clusters so that the gas temperature is determined

by the condition of hydrostatic equilibrium. Figure 4.23 shows the simulated equi-

librium cluster temperature as compared to the simple Mass-Temperature relation

from Vikhlinin (2006 [29]):

T = 5keV(
M500

3E14 M�
)

2
3 (4.1)

Without the inclusion of non-thermal pressure, the equilibrium temperature is

significantly hotter than the observations. We have addressed this up until now

with our “fudge-factor” fntp.
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A No Non-Thermal Pressure B 40% Non-Thermal Pressure

Figure 4.23: Simulated equilibrium cluster temperature as compared to Mass-

Temperature relation from Vikhlinin (2006 [29]). Figure A has no non-thermal

pressure and Figure B has 40% non-thermal pressure. Without the inclusion of

non-thermal pressure, the equilibrium temperature is significantly hotter than the

observations.

We have made significant progress toward improving this simple model, which

this section will now describe. In order to create a more physical model of the

non-thermal pressure, it is necessary to have a physical understanding of the mech-

anism. Some of the mechanisms which have been suggested include: (1) large-scale

rotational fluid motions (Lau 2011 [102]), (2) turbulent fluid motions (Shi and Ko-

matsu 2014 [46]; Nelson, Lau, and Nagai 2014 [47]), and (3) cosmic rays (Birnboim

2013 [40]). Our first direction of effort to improve our model pursues the idea that

the non-thermal pressure is primarily due to turbulent fluid motions and that there

are sources of energy which maintain the turbulent fluid motions by “stirring” the

plasma at large scales. The most likely sources of this energy are outflows from

active galaxy nuclei (Battaglia 2010 [36]). However, our model is not dependent

on knowing the exact sources of this energy. Based on these assumptions, we
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have simulated single galaxy clusters and shown that the turbulent fluid motions

successfully play the role of non-thermal pressure. We have also quantified the

numerical resolution required for these simulations to be successful.

Before reviewing these simulation results, we begin with a qualitative explo-

ration of the energy balance of the plasma in a large galaxy cluster (M ≈ 2E15M�),

shown in Figure 4.24. In the upper figure, there is no non-thermal pressure, so

the primary energy reservoir is thermal motion (heat). In the lower figure, energy

is stored in both thermal motion and turbulent fluid motion. In order to suc-

cessfully model the non-thermal pressure as fluid turbulence, and in order for the

non-thermal pressure to be of the same order as the thermal pressure, the energy

stored in turbulent fluid motion needs to be roughly equal to the thermal energy.

This is shown in the lower figure of Figure 4.24, where the energy densities given

are rough estimates for a cluster of mass M ≈ 2E15M�. Furthermore, in order

for the cluster to be roughly stable on Gy timescales, it is necessary for there to

be a rough energy balance. This means that the rate of energy input into the

cluster at large scales (PStir) is roughly equal to the rate at which viscous dissipa-

tion is transferring energy from turbulent fluid motion to thermal energy (PVisc),

which is roughly equal to the rate at which energy is being radiated away (PXRay).

Otherwise the energy reservoirs cannot remain roughly equal in magnitude. For

example, if PVisc >> PXRay, the energy stored in fluid motion will be rapidly

transferred to thermal motion, and our model no longer successfully models the

non-thermal pressure.
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Figure 4.24: Energy balance of plasma in a large galaxy cluster. In the upper

figure, there is no non-thermal pressure, so the primary energy reservoir is in

thermal motion. In the lower figure, energy is stored in both thermal motion and

turbulent fluid motion. The values of energy and power are rough estimates for a

cluster of mass M ≈ 2E15M�.

These considerations allow us to estimate the level of numerical viscosity re-

quired for our model to be successful. Numerical viscosity transfers energy from

fluid motions to heat, and if the resolution is not high enough, the numerical vis-

cosity will be too high. To quantify this, we have performed simulations of single

triaxial galaxy clusters with M ≈ 2E15M�, including fluid turbulence. For this

study, we have not introduced a “stirring” of the fluid turbulence, but have simply

seeded the gas with an initial turbulence and tracked the decay of turbulent fluid

energy. We have followed Shi and Komatsu (2014 [46]) and Battaglia (2012 [37])
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with an initial assumption of NTP fraction which is 10% in the cluster center and

increases to 50% at R200 (see Figure 4.25).

N
T

P
 F

ra
ct

io
n

Figure 4.25: Red Line - (Battaglia 2012 [37]) fitting formula. Other lines - (Shi,

Komatsu 2014 [46]) model with varying parameters. Reproduced from Shi and

Komatsu.

Since the initial turbulent fluid energy is decaying exponentially, we can write:

EFluidMotions ∝ exp(−λt), (4.2)

and the power dissipated through viscosity is:

PViscosity = λ× EFluidMotions ≈ PXRay, (4.3)

meaning that we need the decay rate to be approximately:

λ ≈ PXRay

EFluidMotions

≈ 0.2 ergs
sec−g

4E16 ergs
g

≈ 0.2Gy−1 (4.4)

As shown in Figure 4.26, very high resolution simulations are needed in order
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to reduce the numerical viscosity in the simulation to the necessary values, and we

have not yet been able to achieve the resolution needed (on the order of 1 kpc grid

size). However, Figure 4.27 shows the result of a cluster simulation with grid size

of 2 kpc in the cluster center and 4 kpc in the outer regions. We see that when we

approach the needed resolution, the fluid turbulence plays the role of non-thermal

pressure as expected and stabilizes the cluster gas. Figure 4.27A shows the stable

cluster that results with no turbulent fluid energy, and with the temperature set

to the needed value to place the cluster in hydrostatic equilibrium. However, as we

said in Figure 4.23 this temperature is too high to agree with empirically measured

clusters. Figure 4.27B shows the result of simply reducing the cluster temperature,

again with no turbulent fluid energy; the cluster gas rapidly collapses and heats up

to the (too hot) equilibrium temperature. Figure 4.27C shows the result with the

cluster gas at the lower temperature, but with significant added turbulent fluid

energy; the stability of the cluster at lower temperature is much improved. To

visualize the resulting fluid turbulence, Figure 4.28 shows both the x-velocity and

the squared magnitude of the vorticity after the simulation of Figure 4.27C has

run for 0.4 Gy. The lower magnitude of the turbulence in the cluster center is

clearly visible.
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Figure 4.26: Decay of turbulent fluid energy as a function of grid resolution. Grid

sizes on the order of 1 kpc or less are needed in order to reduce the numerical

viscosity to the required level.
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Figure 4.27: Simulated evolution of cluster gas. (Solid Blue: t=0.0 Gy; Dashed

Green: t=0.01 Gy; Dashed Red: t=0.40 Gy; Solid Aqua: t=0.80 Gy)

Left: Without fluid turbulence, the equilibrium temperature of the cluster gas is

too high.

Center: Reducing the gas temperature results in an unstable cluster.

Right: The inclusion of fluid turbulence allows a stable cluster at realistic temper-

ature.
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A X-Velocity B Squared Magnitude of Vorticity

Figure 4.28: Non-thermal pressure modeled as fluid turbulence. NTP fraction is

10% in cluster center, increasing to 50% at R200. 2× 5123 grid - grid size of 2 kpc

in center 1 Mpc, 4 kpc in outer regions. (Plot is a 2Mpc X 2Mpc region.)

While much more needs to be done, this promising initial result points the way

to future work to model the non-thermal pressure in a more physically realistic

way. Performing a large number of simulations in this way is probably not realistic

in terms of computing resources, so another approach is needed. Fortunately, a

number of researchers are working on enhancing hydrodynamical models through

the incorporation of sub-grid scale turbulence (Maier 2009 [103]; Latif 2013 [104];

Schmidt 2011 [105]; Iapichino 2011 [106]). This method carries the energy content

of the turbulence which is present on sub-grid scales as additional fluid variables,

allowing a more computationally efficient modeling of the contribution of the fluid

turbulence to the non-thermal pressure. In Section 5.2, we discuss how this future

work might proceed.
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Chapter 5

Conclusions and

Recommendations

5.1 Conclusions

We have presented a detailed simulation of the Bullet Cluster collision, which

gives a 2D fit to observational data spanning an impressively wide range of wave-

lengths. The major conclusions of this work are as follows:

1. A simple initial configuration of two triaxial clusters fits the observed data for

mass lensing quite well. The cluster masses, concentrations, and triaxialities

required are compatible with those seen in N-body simulations.

2. The infall velocities required to explain the observations are not excessive

compared to ΛCDM simulations.

3. The observed X-ray flux is quite sensitive to the baryon structure and can be

reproduced with reasonable assumptions for the initial baryon distributions,
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although the fits are not as good as the fits to the mass lensing data only. The

best-fit structure of the initial clusters is similar to other observed clusters.

The best-fit baryon fraction within the clusters is close to the average in the

Universe, but slightly higher; whether this is an artifact of our simplified

description is under investigation.

4. A significant amount of non-thermal pressure, roughly equal to the ther-

mal pressure, is required in order to fit plasma temperature and S-Z effect

observations.

5. Addition of magnetic fields to the simulations improves the simultaneous fit of

the mass lensing and X-ray flux data, and the magnetic fields required are in

rough agreement with what is required to explain the radio halo observations.

6. Initial work has demonstrated the feasibility of modeling the required non-

thermal pressure as fluid turbulence, although very high resolutions are

needed in order to reduce the numerical viscosity to physical levels.

5.2 Recommendations for Future Work

As always in a work of this type, one learns along the way. We can see many

ways in which the work can be improved, and ways in which the work can be

extended to other areas. Some of these are:

1. Improvement of Non-Thermal Pressure modeling The modeling of non-thermal

pressure is clearly the weakest part of this analysis. We have shown in Section

4.5 the feasibility of modeling the non-thermal pressure as fluid turbulence.
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Very high resolution simulations are needed in order to reduce the numer-

ical viscosity in the simulation to realistic physical values, but when this

is done the fluid turbulence serves as the expected source of non-thermal

pressure. We propose to use sub-grid scale modeling to model the turbulent

fluid motions in a computationally efficient way. We have obtained a prelim-

inary copy of the Enzo code with the sub-grid-scale terms added (Wolfram

Schmidt, private communication, April, 2014). A logical path is to study

and modify this code as necessary to allow us to model single galaxy clus-

ters, using high-resolution simulations of single galaxy clusters (like Figure

4.27) to calibrate the sub-grid-scale code. We can then build simulations of

stable single galaxy clusters to use as inputs to the cluster collisions. This

will give a much more realistic model of the non-thermal pressure than we

have done to date. There are also observational studies ongoing (Vazza 2011

[107]; Bohringer 2010 [108]; Biffi 2013 [109]; Zhuravleva 2014 [110]) which

attempt to quantify the fluid turbulence, mainly through measuring thermal

broadeneing of X-ray spectral lines.

2. Verification of Magnetic Field Configuration While our results with inclusion

of the magnetic field encourage us that it may be possible to constrain the

cluster magnetic field, much work is needed before this can be done. In

particular, the coherence length of the initial magnetic field has an effect on

the structure and growth of the magnetic fields during the collision, and this

needs to be explored. Furthermore, the required level of magnetic fields is

likely related to the amount of non-thermal pressure, so the reliability of the

inferred magnetic fields can only be settled after the more physical model of

the non-thermal pressure has implemented.
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3. Use of colliding galaxy clusters to constrain dark matter interactions and

alternatives to GR: Having achieved believable models for a galaxy cluster

merger, one of our goals was to use these models to introduce constraints

on dark-matter interactions and alternate theories of gravity. Simulations of

these cluster mergers are ideal laboratories for this. The plan would be to

introduce the modified interactions, then repeat the optimization to see if

a physically reasonable initial cluster structure can still explain the existing

observations. Repeating this process should allow us to place constraints on

the strength of the modified interactions.

4. Build a catalog of merging galaxy clusters: One request that we have received

is to use the simulation machinery that we have created in this work to build a

catalog of merging galaxy clusters to help guide the observations. The plan

here would be to draw a set of initial galaxy clusters from a distribution,

assign them an appropriate set of initial conditions, and then collide them

and depict the result at different times and different viewing angles. This

catalog could be especially useful for interpreting the large S-Z catalogs which

are upcoming.

5. Improvement of radio emission model: The work to date has used a simple

model for calculating the radio emissions from the colliding clusters. There

is much opportunity to enhance this model by introducing a more physical

model for the evolution of the non-thermal electron population responsible for

the emissions, as well as introducing more realistic models for the magnetic

fields. Some relevant references on this work include (vanWeeren 2011 [111];

Ensslin 2009 [59]; Vogt 2013 [58]).
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6. Application of the 2D image technique to other galaxy cluster collisions: The

techniques developed here of using the fit between observed 2D images and

simulated 2D images to constrain the structure of colliding clusters has given

insight into the Bullet Cluster collision. There are numerous other examples

of colliding galaxy clusters, some more complex in that they have three or

more colliding clusters. We propose to apply these techniques to a selected

group of these other clusters. The cluster known as “El Gordo” (ACT-CL

J0102-4915) appears to have the most observational data at present, so we

would propose to begin with this cluster. Some simulation work on this has

already been reported (Donnert 2014 [112]).

Finally, more and better observational data will be a valuable addition to the

modeling efforts. Our results depend heavily on having an accurate reconstruction

of the current mass distribution. Since the X-ray flux is proportional to the square

of the baryon density, and the baryon density depends on the dark matter density,

small changes in the mass distribution lead to large changes in the calculated X-

ray flux. Errors in the mass reconstruction will therefore lead to errors in our

determination of the optimal initial conditions. To constrain the magnetic fields,

polarized radio emission and Faraday rotation measures of sources behind the

bullet – especially strongly lensed ones! – would help the effort immensely.
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