Poisson Equation Solutions for Thick Fully-Depleted CCDs

Craig Lage

July 2, 2015

Outline

- Introduction
- Solving Poisson's Equation on a Grid
- Boundary Conditions
- Baseline Solution
- How good is our Current Dipole Model?
- Array Edge
- Incorporation into PhoSim
- Limitations and Next Steps

Basic Device Structure

- From Holland, et.al., 2007, "Fabrication of back-illuminated, fully depleted charge-coupled devices".
- Our devices are n-channel instead of p-channel, so all polarities are reversed.

Boundary Conditions - Typical Simulation $100 \mu m$ Cube.

Solving Poisson's Equation on a Grid

$$\nabla^2 \varphi = \rho$$

$$\frac{\partial^2 \varphi_{i,j,k}}{\partial x^2} = \frac{(\varphi_{i+1,j,k} - \varphi_{i,j,k}) - (\varphi_{i,j,k} - \varphi_{i-1,j,k})}{h^2}$$

 $(\varphi_{i+1,j,k} + \varphi_{i-1,j,k} + \varphi_{i,j+1,k} + \varphi_{i,j-1,k} + \varphi_{i,j,k+1} + \varphi_{i,j,k-1} - 6*\varphi_{i,j,k}) = h^2 * \rho_{i,j,k}$

$$\varphi_{i,j,k} = \frac{1}{6} * (\varphi_{i+1,j,k} + \varphi_{i-1,j,k} + \varphi_{i,j+1,k} + \varphi_{i,j-1,k} + \varphi_{i,j,k+1} + \varphi_{i,j,k-1} - h^2 * \rho_{i,j,k})$$

- Conceptually, we simply iterate until convergence.
- In practice, it converges very slowly millions of iterations are required.

Multi-Grid Methods to the Rescue

Finest Grid	Cells/Pixel	Grid Spacing	Time (laptop)
128^{3}	12	0.83 micron	5 sec.
256^{3}	24	0.41 micron	45 sec.
512^{3}	48	0.20 micron	5 min.

- Each successive step down is ≈ 8 times faster than the next larger grid.
- In practice, I iterate the coarsest grid to machine precision, then 2X fewer iterations at each finer grid, ending with ≈ 50 iterations at the finest grid.
- A single Vcycle suffices to converge to $1\mu Volt$ accuracy.

Cross Section in Column Direction

.

Cross Section in Row Direction

As modeled.

Pixel Region - All Pixels Empty

CCD Charge Collection. Grid = 512*512*512.

Pixel Region - All Pixels Empty

10/20

Pixel Region - One Pixel Holding 100K e-

CCD Charge Collection. Grid = 512*512*512.

11 / 20

Test of Current Dipole Model - Charge Distribution

Charge Distribution of 50K e- in different Locations

Test of Current Dipole Model - Potentials

Test of Current Dipole Model - e- Paths

Impact of Charge Distribution on Electron Paths

Test of Current Dipole Model - Pixel Shapes

Potential Simulation at Array Edge

Array Center Potentials. Grid = 1024*256*256.

Array Edge Electron Paths

Electron Path Dependence on Voltages and Doping

Array Edge Astrometric Shift

- Have looked at incorporating into PhoSim.
- Electron transport calculations are much too slow.
- PhoSim (as I understand it) builds a look-up table that shifts the electron from point of creation to point of collection, based on charge in current pixel.
- Tried doing this, but electron path depends on charges stored in many surrounding pixels.
- Ideas?

- Code is available at this site (https://github.com/craiglagegit/Poisson_CCD).
- Limitations
 - Charge distributions are assumed, rather than solved self-consistently.
 - Channel stop region is uncertain (fully depleted or not?).
 - Carrier transport by drift only, no diffusive scatter (can be added).
- Next Steps
 - Continue taking measurements to validate and calibrate the model.
 - Possible to incorporate into PhoSim?
 - Check channel stop region with a true device simulator (SLAC?).