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ABSTRACT

In this work, we report on a detailed simulation of the Bullet Cluster (1E0657-56) merger, including magnetohydro-
dynamics, plasma cooling, and adaptive mesh refinement. We constrain the simulation with data from gravitational
lensing reconstructions and the 0.5–2 keV Chandra X-ray flux map, then compare the resulting model to higher
energy X-ray fluxes, the extracted plasma temperature map, Sunyaev–Zel’dovich effect measurements, and cluster
halo radio emission. We constrain the initial conditions by minimizing the chi-squared figure of merit between the
full two-dimensional (2D) observational data sets and the simulation, rather than comparing only a few features such
as the location of subcluster centroids, as in previous studies. A simple initial configuration of two triaxial clusters
with Navarro–Frenk–White dark matter profiles and physically reasonable plasma profiles gives a good fit to the
current observational morphology and X-ray emissions of the merging clusters. There is no need for unconventional
physics or extreme infall velocities. The study gives insight into the astrophysical processes at play during a galaxy
cluster merger, and constrains the strength and coherence length of the magnetic fields. The techniques developed
here to create realistic, stable, triaxial clusters, and to utilize the totality of the 2D image data, will be applicable
to future simulation studies of other merging clusters. This approach of constrained simulation, when applied to
well-measured systems, should be a powerful complement to present tools for understanding X-ray clusters and
their magnetic fields, and the processes governing their formation.
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1. INTRODUCTION

The mergers of clusters of galaxies are key events in the
evolution of structure in our universe. The ongoing Bullet Clus-
ter merger (1E0657-56) is one of the most interesting of such
events known for several reasons, including its relatively simple
structure and high surface brightness across the electromagnetic
spectrum. Because of this, the Bullet Cluster has been exten-
sively studied observationally, making it an ideal laboratory for
the study of the physics of galaxy clusters and their interac-
tions. The clear separation of the lensing mass centroids from
the centroids of the X-ray emission has been taken as one of the
strongest demonstrations of the reality of dark matter (Clowe
et al. 2006).

A number of simulation studies of the Bullet Cluster merger
have been performed (Springel & Farrar 2007; Mastropietro
& Burkert 2008; Milosavljević et al. 2007; Dawson 2013).
Although there has been rough agreement with the observa-
tions, there has been disagreement on some key details of the
initial conditions, especially the initial velocities of the two sub-
clusters. These studies have raised the question of whether or
not this cluster is consistent with a ΛCDM cosmology (Lee &
Komatsu 2010). Even the need for dark matter has been called
into question, and a modified gravity model has been proposed
as an alternate explanation (Brownstein & Moffat 2007).

We have undertaken to build a detailed simulation model of
the Bullet Cluster merger, with the intent to use it to study cluster
structure, dark matter–dark matter and dark matter–baryon
interactions, possible modifications of general relativity, and
to check the extent to which this cluster merger is or is not an
outlier in ΛCDM cosmology. At the same time, constraints can
be obtained on the present baryon and electron distributions,
the magnetic field of the system and potentially on the non-

thermal sources of support in X-ray clusters. One of the
improvements of this study compared to past studies is that,
rather than compare the simulation to the data using a small
number of extracted parameters (mass centroids, calculated
velocities, etc.), we compare the simulation to the observational
data on a pixel-by-pixel basis. Extensive observations of the
Bullet Cluster have been made at multiple wavelengths, and
these two-dimensional (2D) images contain a large quantity of
information. Our approach makes use of this information to
provide details of the structure of the initial clusters and the
physics of the collision. A second improvement presented here
is the implementation of techniques to generate realistic, stable,
triaxial clusters. We will show that our techniques result in an
excellent fit to the observed mass lensing distribution for this
cluster collision. We will also show reasonably good fits to the
measurements of X-ray flux, Sunyaev–Zel’dovich (S-Z) effect,
plasma temperature, and radio emission, although these results
are more uncertain due to the additional “gastrophysics” degrees
of freedom.

The paper is organized as follows. We begin by reviewing the
observational data that we use to constrain the simulations and
the calculation of the figure of merit comparing the observations
to the simulated images (Section 2). This is followed by a
description of the techniques for generating the triaxial clusters
which are the inputs to the collision (Section 3). We then
describe the optimization and error estimation techniques, show
a set of image comparisons comparing the observations to the
best fit simulations, and report what we have learned about the
structure of the initial clusters (Section 4). Finally, we discuss
some of the implications (Section 5), and conclude (Section 6).
The Appendix describes the details of the simulations and
describes how we calculate simulated images to compare to
the observational data.
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Figure 1. Left: mass lensing data set. Center: 500 eV–2000 eV X-ray flux data set. Right: these two primary data sets overlaid. Only the region inside the heavy white
outline is included in the χ2 calculation.

(A color version of this figure is available in the online journal.)

2. SUMMARY OF OBSERVATIONS

We compare six observational data sets to the simulation:

1. a mass lensing reconstruction;
2. three maps of X-ray intensity in different energy bins;
3. the S-Z effect cosmic microwave background (CMB) tem-

perature decrement; and
4. the radio halo intensity.

Each data set is converted to a 2D map containing 110 ×
110 pixels,1 where for each pixel we have an observed value
and an estimated uncertainty. Two primary data sets, the mass
lensing data and the lowest energy X-ray flux, are used to
constrain the simulation initial conditions and fitting parameters.
The resulting simulation is then used to generate images which
are compared to the remaining four data sets. We have manually
identified the central region where the data has the highest
confidence, and only pixels inside this region are included in
the χ2 calculation in Equation (1). This region is shown by the
heavy white outline in Figure 1; it contains 5780 pixels in each
data set and is about 4.′5 across.

Using the two primary data sets, we construct the following
combined figure of merit to measure the quality of fit between
simulation and measurement:

χ2 = 1

NkNi

Nk∑
Observations = k

Ni∑
Pixels = i

(Simk
i − Obsk

i )2

(σ k
i )2

, (1)

and then vary the parameters to minimize this χ2. For brevity,
we refer to this parameter as χ2 throughout this work, but in
fact it is χ2 per degree of freedom. When fitting to the two
primary data sets, the product NkNi is 11,560. We note that
the parameter χ2 is used as a figure of merit for finding the
best-fit initial conditions. Our large-scale simulation provides a
mean description of the system, and is not expected or intended
to capture small-scale details such as inhomogeneous initial
conditions and accretion of small mass concentrations during the
merging process. For these reasons, although the χ2 parameter
is useful for finding the best-fit initial conditions, we do not
expect a value of one.

2.1. Primary Constraining Data Sets

1. The gravitational lensing reconstruction from Bradač et al.
(2006). This data set consists of the total projected mass

1 Maps of 110 × 110 pixels were chosen for historical reasons. The initial
mass lensing maps were at this resolution, so all subsequent maps were
adjusted to match.

in each 2D pixel as determined to reproduce the observed
weak and strong lensing data. The values of σi associated
with the reconstruction have also been provided by M.
Bradac (2012, private communication); these typically
range from 5%–25% of the mass lensing data.

2. X-ray flux measurements from the Chandra X-Ray Obser-
vatory (Tananbaum & Weisskopf 2001). A total of nine
separate observations are included in the data sets, repre-
senting a total observing time of 558 ks. The X-ray flux is
binned into three separate energy bins, 500 eV–2000 eV,
2000 eV–5000 eV, and 5000 eV–8000 eV. The lowest en-
ergy bin (500 eV–2000 eV), which contains most of the
photons, is our second primary data set, along with the
mass-lensing map. The “Ciao” (Fruscione et al. 2006) soft-
ware analysis package is used to reduce the measured data to
an X-ray flux in photons (cm2 s)−1. For this data, a statisti-
cal uncertainty of 1/

√
Nphotons and a systematic uncertainty

of 1.7% (Tananbaum & Weisskopf 2001) are combined in
quadrature to generate σi .

2.2. Secondary Comparison Data Sets

1. The two higher energy X-ray bins (2000 eV–5000 eV and
5000 eV–8000 eV) from the Chandra X-ray data, extracted
as described above.

2. A S-Z effect map from Plagge et al. (2010). This is a map
of the S-Z effect temperature decrement in μK, measured
using the South Pole Telescope. Based on Plagge et al.
(2010), σi is taken to have a constant value of 25 μK.

3. Radio halo measurements at 1.3 GHz from Liang et al.
(2000). This data set is a digitized version of the map in
Figure 5 from Liang et al. (2000). No attempt is made to
assign a σi value for this data set.

Plots of each of the six data sets are shown in Figure 2.
Comparisons of these data sets to the corresponding simulation
predictions are shown in the following sections.

3. INITIAL CONDITIONS AND FITTING PARAMETERS

The simulations begin with two widely separated galaxy
clusters, each in a state of dynamic equilibrium, approaching
each other on a collision course. For clarity, in what follows
we will refer to the larger cluster as the main cluster, and the
smaller cluster as the bullet cluster. The bullet cluster initially
approached the main cluster from the left, but has now passed
through the main cluster and is currently on the right. The major
challenge in obtaining a simulation which produces a good fit to
the observations lies in choosing appropriate initial conditions.
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(a) Mass Lensing (b) X-ray: 500-2000eV (c) X-ray: 2000-5000eV

(d) X-ray: 5000-8000eV (e) SZE ΔT (f) Radio Flux

Figure 2. Six observational data sets.

(A color version of this figure is available in the online journal.)

In the first stage of this effort we used spherically symmetric
clusters. This gave an approximate fit to the observations, but as
our understanding increased we came to appreciate that some
features of the system are most likely due to initial cluster
triaxiality. We find that initial clusters with a triaxial shape
give a much better fit to the data, although this introduces
additional variables. With tens of thousands of measurements to
fit, these additional parameters are in fact quite well constrained.
The procedures used to generate stable triaxial clusters with a
Navarro–Frenk–White (NFW) dark matter profile and a flexible
baryon profile are described below.

We use a total of 34 fitting parameters, as listed in Table 1
and described below, to model the collision.

3.1. Dark Matter Halos

For the dark matter halos, we assume that each of the initial
clusters is described by a triaxial NFW profile (Navarro et al.
1996; Lee & Suto 2003), with dark matter surfaces of constant
density being a set of concentric ellipsoids, as follows:

ρDM = ρDM0
R
RC

(1 + R
RC

)2
. (2)

Here the radial parameter R is given by

R2 = x2 +
y2

Q2
+

z2

P 2
, (3)

where P and Q are the triaxiality axis ratios. We take P � Q �
1, meaning that the x axis is the long axis and the z axis is the
short axis. Each ellipsoid is then rotated to its initial orientation,
as described later. The parameters ρDM0 and RC can be written
in terms of the virial radius R200, the concentration parameter C,
the mass within the virial radius M200, and the critical density

ρCRIT at redshift z as (Lee & Suto 2003)

RC = R200

C
, (4)

R200 =
[

M200C
2

4π200ρCRIT(1+z)3(1 + C)((1 + C) ln(1 + C)−C)

]1/3

,

(5)

ρDM0 = M200C
3(1 + C)

4πR3
200((1 + C) ln(1 + C) − C)

. (6)

There are thus a total of eight parameters to describe the two
clusters: the mass M200, the concentration parameter C, and the
shape parameters P and Q, for each of the two clusters.

3.2. Baryonic Distributions

Following Lee & Suto (2003), we make the physically
reasonable assumption that the density and temperature of
the baryonic plasma are constant along surfaces of constant
gravitational potential. We find that correctly fitting the X-ray
emission data depends critically on the gas profiles of the initial
clusters. For this reason, we assume a flexible three-slope gas
density profile, as follows:

ρG = ρG0

(1 + ( R
RC1

)2)β1(1 + ( R
RC2

)2)β2−β1(1 + ( R
RC3

)2)β3−β2
, (7)

where the parameter R is given by R2 = x2 + y2/Q(R)2 +
z2/P (R)2, with P (R) and Q(R) the (slowly varying) shape
parameters of the equipotential ellipsoids. As described in
detail in reference (Binney & Tremaine 2008), the equipotential
ellipsoids defined by P (R) and Q(R) are aligned with the
density ellipsoids, but they are more spherical than the density
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Table 1
Best-fit Parameters Determined from the Simulations, as well as an

Estimate of the Uncertainties

Fitting Parameters with Best-fit Values
Dark Matter Halo Parameters

Parameter Description Value Sigma Units

M1 Main cluster mass (M200) 1.91E15 0.20E15 M�
M2 Bullet cluster mass (M200) 2.59E14 0.31E14 M�
C1 Main cluster concentration 1.17 0.14 . . .

C2 Bullet cluster concentration 5.45 0.70 . . .

P1 Main cluster Z/X axis ratio 0.35 0.05 . . .

Q1 Main cluster Y/X axis ratio 0.68 0.09 . . .

P2 Bullet cluster Z/X axis ratio 0.61 0.08 . . .

Q2 Bullet cluster Y/X axis ratio 0.68 0.10 . . .

Gas Profile Parameters

Parameter Description Value Sigma Units

GF1 Main cluster gas fraction 0.19 0.02 . . .

GF2 Bullet cluster gas fraction 0.17 0.02 . . .

RC11 Main cluster gas radius1 59.4 7.9 kpc
RC12 Bullet cluster gas radius1 19.8 1.9 kpc
β11 Main cluster exponent1 0.38 0.06 . . .

β12 Bullet cluster exponent1 0.51 0.07 . . .

RC21 Main cluster gas radius2 69.9 11.4 kpc
RC22 Bullet cluster gas radius2 47.8 6.4 kpc
β21 Main cluster exponent2 0.45 0.05 . . .

β22 Bullet cluster exponent2 0.85 0.14 . . .

RC31 Main cluster gas radius3 647 82 kpc
RC32 Bullet cluster gas radius3 465 80 kpc
β31 Main cluster exponent3 0.67 0.05 . . .

β32 Bullet cluster exponent3 0.50 0.06 . . .

Orbital Geometry Parameters

Parameter Description Value Sigma Units

φ1 Main cluster Euler angle 1 185 33 Degrees
θ1 Main cluster Euler angle 2 38.4 5.9 Degrees
ψ1 Main cluster Euler angle 3 221 30 Degrees
φ2 Bullet cluster Euler angle 1 164 23 Degrees
θ2 Bullet cluster Euler angle 2 100 14 Degrees
ψ2 Bullet cluster Euler angle 3 65.0 10 Degrees
IP Impact parameter 256 35 kpc
VInc Infall velocity increment −10.9 15 %

Remaining Parameters

Parameter Description Value Sigma Units

Z Metallicity (cooling) 0.78 0.10 Solar
Mag Peak magnetic field magnitude 61.0 5.4 μG
fntp Non-thermal pressure factor 0.52 0.09 . . .

Visc Viscosity 0.12 0.02 Fraction of Spitzer

Note. The determination of the uncertainties is described in Section 4.2.

ellipsoids and become more spherical still as one moves out
from the cluster center.

The central density parameter ρG0 is adjusted so that the
ratio of baryonic mass to total cluster mass within R200 is
equal to an assumed gas fraction parameter GF. This parameter
GF is then taken as a fitting parameter for each cluster. For
given plasma and dark matter densities, the plasma temperature
required for hydrostatic equilibrium is determined by evaluating
the following integral for the particle internal energy

u(R) = 3

2ρG(R)

∫ Rmax

R

∂ϕ

∂R′ ρG(R′)dR′. (8)

Since the plasma temperature is assumed constant along the
equipotential ellipsoids, it is sufficient to evaluate this integral

Table 2
Summary Enzo Simulation Conditions

Parameter Value Units

Simulation volume 12000 × 6000 × 6000 kpc

Coarse grid 128 × 64 × 64 . . .

Maximum number of refinement levels 6 . . .

Minimum grid cell size 5.8 kpc
Total number of grid cells 3.2E6 . . .

Maximum baryon mass per grid cell 2.5E8 M�
Number of DM particles 5.0E6 . . .

Mass of DM particles 1.5E8 M�
Hydro method Runge–Kutta third-order . . .

MUSCL w/Dedner MHD
Cosmology Flat, static . . .

along the x axis of the cluster, and use the resulting value all
along the equipotential surface intersecting that axis at R.

There are thus 14 parameters needed to describe the baryonic
matter distributions: the gas fraction parameter GF and three
pairs of (RC, β) parameters, for each of the two clusters.

3.3. Cluster Generation Procedure

To combine these dark matter and gas profiles into a stable
cluster we use the following procedure.

1. We choose the cluster mass, concentration parameter,
and triaxiality parameters. These parameters fix the mass
density, and hence the gravitational potential of the cluster.

2. We generate a stable dark matter halo using the
Schwarzschild procedure (Schwarzschild 1979). This pro-
cedure involves assuming a randomly chosen initial po-
sition and velocity for each of a set of trial dark matter
particles within the given potential, then calculating the
orbit followed by each particle. The density distribution
which results from each particle following the calculated
orbit is then determined. A set of linear equations is solved
to calculate the weight to be given to each of the trial parti-
cles in order to reproduce the original, assumed mass den-
sity distribution. The dark matter particle initial positions
and velocities are distributed along these orbits. For these
studies we use a total of 50,000 initial orbits, and several
million dark matter particles (see Table 2 in the Appendix).
We utilize a software package called SMILE (Vasiliev &
Athanassoula 2012), for carrying out the Schwarzschild
procedure, and we find it to be very successful at generat-
ing stable triaxial halos.

3. We choose the parameters specifying the cluster baryon
fraction (gas fraction) and the gas density profile.

4. Given the potential profile and the gas density pro-
file, we calculate the gas temperature profile using
Equation (8).

5. After each cluster is generated, we rotate it to an assumed
orientation, specified by a total of six Euler angles, three
for each cluster.

This procedure does involve an approximation, since the cluster
gravitational potential is assumed to be set by the dark matter
halo, whereas the cluster also contains a significant amount of
baryonic matter. In principle, we could iterate the procedure,
calculating the potential due to the combined dark matter and
baryonic mass distribution. However, since the shape of the
baryonic matter distribution is not too different from the shape
of the dark matter distribution (see Figure 12(a)), we find that
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(a) DM shape (b) Gas shape

Figure 3. Shape stability of a triaxial cluster with P = 0.35 and Q = 0.70.

(A color version of this figure is available in the online journal.)

Figure 4. Profile stability of a triaxial cluster with P = 0.35 and Q = 0.70. Note that the temperatures plotted are effective temperatures, as discussed in Sections 3.6
and 4.3.3.

(A color version of this figure is available in the online journal.)

it is sufficient to use the shape of the potential determined
by the dark matter profile, but use the full cluster mass (dark
matter + baryons) to set the magnitude of the potential. Because
the mass distribution profiles are similar, and the cluster mass
is dominated by the dark matter, the error involved in this
assumption is small and this procedure gives stable clusters. We
demonstrate the stability of clusters created by this procedure
in Figures 3 and 4, which show that a representative cluster is
stable on a gigayear timescale. Figure 3 shows the stability of

the cluster shape, and Figure 4 shows the stability of the cluster
profiles.

3.4. Initial Positions and Velocities

The two initial triaxial clusters are assumed to fall in from
infinity on a near-radial trajectory. We begin the simulation
when the virial radii of the two clusters make contact. Figure 5
shows a density slice near the beginning of the simulation. The
initial velocities are controlled by two free parameters: the initial
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Figure 5. This graph shows a typical baryon density slice near the beginning of the simulation. The black boxes show the initial mesh distribution. The size of the
region shown is 12.0 × 6.0 Mpc.

(A color version of this figure is available in the online journal.)

impact parameter of the two cluster mass centroids and a radial
velocity percent increment over and above the velocity acquired
while free-falling from infinite separation. These are referred
to as IP and VInc, respectively, in Table 1. We find the best-fit
value of VInc to be about 10% less than unity, indicating that the
clusters were initially bound, and also showing that large initial
velocities are not required to reproduce the observations.

3.5. Magnetic Field

We set the initial magnetic field configuration of the two
clusters as follows.

1. We generate each of the three components of the Fourier-
transformed B fields B̂x, B̂y, and B̂z as a Gaussian random
field with a Kolmogorov spectrum (B̂i ∝ k−5/3). The
minimum and maximum possible k values for the initial
random field configuration are given by

kmax = 2π

L
∗ N

2
kmin = kmax/4, (9)

where L is the box length, which is 6 Mpc in these sim-
ulations, and N is the number of cells in the x direction
of the largest (coarsest) grid, which is 128. Due to the
adaptive mesh refined MHD, turbulence on smaller scales
is generated as the simulation progresses. An important
physical question is what maximum coherence length char-
acterizes the initial field configuration. Only a few values
have been tried in this first analysis. The best of them is
presented here; it has an initial maximum coherence length
equal to four times the initial coarsest grid spacing, i.e.,
about 180 kpc. Future work will explore how well the
B-field configuration can be constrained, but this must be
done in conjunction with developing a physical understand-
ing of the non-thermal pressure, discussed in the next sec-
tion.

2. We clean the divergence in k space by forcing k · B̂ = 0.
3. We then Fourier transform the B-field components back to

real space. All of the above steps are performed with the

aid of the GarFields software package (Kitaura & Enßlin
2008).

4. This generates a B field of uniform magnitude throughout
the simulation volume, whereas we expect the field to
be stronger in regions of higher plasma density. In a
simple collapse model of a magnetized sphere, the density
scales as 1/r3 and the magnetic field scales as 1/r2.
We therefore scale the initial B-field magnitude so that
|B| ∝ ρ

2/3
gas . Note that the scaling factor is applied after

the two clusters are combined into a single simulation file,
so the same scaling factor (relationship between |B| and
ρgas) is used for both clusters. This spatial scaling of the
uniform Kolmogorov B field introduces a slight non-zero
value of ∇ · B. We have verified that, because the length
scale of the plasma density variation is much longer than
the scale of B-field fluctuations, removing this ∇ · B has
negligible impact on the simulations, so we do not do this
routinely. Quantitatively, |∇ ·B|/|B| has a value of between
10−3 and 10−4 kpc−1, and this value is basically unchanged
by cleaning the divergence, indicating that this quantity is
probably limited by discretization errors.

The only fitting parameter associated with the initial mag-
netic field configuration is thus an overall scale for the field
magnitude, referred to as Mag in Table 1. This parameter is the
peak magnetic field magnitude in the region of highest density
in the initial configuration, which proves to be at the center of
the bullet cluster.

3.6. Non-thermal Pressure

In this simulation study we have attempted to calculate
as many of the observables as possible from first principles,
minimizing the number of “fudge factors.” However, we do
find it necessary to include such an adjustable parameter to
adequately describe the non-thermal pressure. It has been known
for some time (see, for example, Loeb & Mao 1994) that a
significant amount of non-thermal pressure support is needed
in galaxy clusters in order to agree with the observations, and
we find this as well. The source of this non-thermal pressure
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is currently unknown, although turbulent fluid motions and/or
cosmic ray pressure appear to be the most likely explanations.
Thus, following Bode et al. (2012), we phenomenologically
incorporate non-thermal pressure into this simulation using a
single, space- and time-independent parameter, fntp, as follows:

Ptot = Pth + Pntp = Pth

(
1 +

fntp

1 − fntp

)
= Pth

1

1 − fntp
. (10)

In effect, the simulation is performed with an effective
temperature which is higher than the actual temperature in
order to account for the increased pressure, then the effective
temperature is reduced by the scaling factor when calculating
X-ray flux and the associated plasma cooling. This is a relatively
primitive way of including non-thermal pressure and will be
improved in future work. Further discussion can be found in
Section 4.3.3 where the predictions from the simulation are
discussed.

3.7. Other Fitting Parameters

The remaining fitting parameters are the following.

1. The metallicity parameter Z (defined as a fraction of solar
metallicity), which controls both the rate of cooling and the
plasma X-ray emission, as discussed in Appendix A.3.2.

2. The viscosity parameter, Visc, which adds a viscosity as a
fraction of Spitzer viscosity, and will be discussed in more
detail in Section 4.3.4.

4. BEST FIT INITIAL CONDITIONS

4.1. Optimization

For a given choice of parameters, the collision process is
simulated as described in Appendix A.1 and the full state
of the system is recorded at time steps of 0.01 Gyr in the
relevant range of time. The simulation is run in a frame with the
initial cluster velocities in the x direction, and the initial impact
parameter in the y direction, so there are two angular variables
(θobs, ψobs) which determine how our viewing angle is related to
the simulation coordinates. For each time value T, a search is run
through these viewing angles and the observables are calculated
as described in Appendix A.3. This generates a set of 2D images
(one for each observable) for each set of values (T , θobs, ψobs).
These then need to be aligned to the observations in the
plane of the sky, requiring three more variables (ΔX, ΔY, φobs).
The values of (ΔX, ΔY, φobs, θobs, ψobs) which minimize the
calculated χ2 value are determined for each value of T. (After
the initial conditions are approximately determined, this entire
procedure only needs to be carried out for a limited time
range.) Figure 6 shows the typical evolution of the χ2 parameter
through simulation time. The observations are best described
after approximately 0.85 Gyr have elapsed since the beginning
of the simulation. The time of closest approach of the mass
centroids is at 0.73 Gyr after the start of the simulation, so
approximately 120 My have elapsed since the time of closest
approach.

We run simulations exploring the space of initial conditions
and other parameters to find those which minimize the χ2 pa-
rameter. These simulations are run on the NASA Pleiades super-
computer cluster, with each simulation running for about eight
hours of wall clock time. About 10% of this time is in setting up
the initial conditions and analyzing the result. The remainder is
spent in running the Enzo simulation, typically using 64 CPUs.

Figure 6. Typical evolution of the χ2 parameter (for the best-fit viewing angle
and position in the plane of the sky) as the simulation progresses.

(A color version of this figure is available in the online journal.)

The space of possible initial conditions is too large to carry out
a fully systematized parameter optimization procedure, such as
performing a Markov Chain Monte Carlo (MCMC). Instead,
Monte Carlo searches are run within generously selected ranges
of parameters, with steepest-descent optimizations to find the
locally best fits for several of the best points in parameter space,
supplemented by judicious by-hand exploration of parameter
space to make sure no minima are overlooked. No sampling
procedure can absolutely guarantee one is near the global rather
than just a local minimum for χ2, the strong constraints the
data imposes make it likely that the best-fit initial conditions
reported here are close to a global optimum, for the adopted
model treatment. In all, more than 1000 simulations were run in
order to find the best-fit initial conditions and their uncertainties
given in Table 1.

There is some degree of decoupling in the parameter space.
The mass lensing projection is primarily determined by the
dark matter distribution, and hence is mostly determined by
the shapes and orientations of the dark matter halos, which
are controlled by the parameters labeled “Dark Matter Halo
Parameters” and “Orbital Geometry Parameters” in Table 1.
To most efficiently find the global minimum, the optimization
strategy we follow is first to optimize these parameters with a
χ2 calculated only from the mass lensing data, then optimize
the remaining parameters with a χ2 calculated from both the
mass lensing data and the lowest energy X-ray flux, and finally
to optimize on the full parameter set with a χ2 calculated from
both the mass lensing data and the X-ray flux data.

4.2. Estimation of Parameter Uncertainties

To estimate the uncertainty associated with the parameters
determined from the optimization, one would ideally perform
an MCMC analysis of the simulation model in the multi-
dimensional space of initial conditions. However, the minimal
such MCMC analysis for a system such as ours involves running
tens or hundreds of thousands of trials, and the simulation is too
computationally expensive to allow this. The strategy we use is
to run a smaller number of trials, build an approximate model of
χ2 in the multi-dimensional parameter space, then characterize
the parameter distributions using this model. This procedure is
described in more detail in Bliznyuk et al. (2008), where it is
shown to give distributions similar to those which result from
running an MCMC analysis on the original computationally
expensive simulation.

7
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Figure 7. Behavior of the RBF model as two representative parameters M2 (Bullet Cluster mass) and GF1 (Main Cluster gas fraction) are varied around the optimum
point, with all other parameters held fixed. The RBF model is the black lines, and the actual simulations are the red circles.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 8. Mass lensing fit between the data and the simulation. In each of these plots, the measured data is in the upper left and the simulated result, on the same scale,
is in the upper right. The lower left shows an overlay of the measured data and the simulation, with the simulation shown as black contour lines, and the lower right
shows the measured data and simulation along a line through the 2D data planes chosen to pass approximately through the measured peaks; this slice is shown as a
dotted white line in the lower left. (a) Fit achieved with χ2 calculated from mass lensing data only. Mass only χ2 = 1.15. (b) Fit achieved with χ2 calculated from
mas lensing data and lowest-energy X-ray flux data. Mass lensing contribution to χ2 = 2.04.

(A color version of this figure is available in the online journal.)

Simulations are run using a range of initial conditions, and
a χ2 value is calculated for each. Some of these simulation
runs (approximately 700) are part of the χ2-minimization runs,
and some (approximately 300) are run with intentionally varied
parameters in order to span the space of input parameters. Many
of these simulations are run with the lower resolution conditions
described in the Appendix. We then use the results of these
simulation runs to build a multi-dimensional cubic-spline radial
basis function (RBF) model of χ2 as a function of the input
parameters. This RBF model fits the simulated points exactly,
and varies smoothly as one moves away from the simulated
points.

Figure 7 shows plots of the RBF model as two typical pa-
rameters move away from the optimum point with all other
parameters held fixed. The RBF model, which is computation-
ally easy to evaluate, is then used to estimate the uncertain-
ties of the parameters, defined so that the region within 1σ
on either side of the best-fit value of a given parameter con-
tains 34% of the probability density after marginalizing over all
other parameters. The sigma values which result are tabulated in
Table 1.

4.3. Comparison of Best-fit Simulation to Observations

Following the procedures in the preceding sections leads
to the best-fit initial conditions summarized in Table 1. This
section discusses a series of images which exemplify the fit
between the optimized simulation and the observations. We be-
gin with results which are governed mainly by the initial condi-
tions on the dark matter and the constraints from mass-lensing
data. Then we turn to the more “gastrophysics”-dependent
aspects.

4.3.1. Mass Lensing

Figure 8(a) shows the predicted mass-lensing map when
parameters are optimized using χ2 calculated only from the
mass lensing data, showing that the model is quite successful at
reproducing the mass lensing distributions. The initial cluster
triaxiality reproduces the shapes of the clusters quite well,
and the value of χ2 = 1.15 obtained shows a good fit to the
observations. For comparison, Figure 8(b) shows the fit of
the same simulation with a χ2 calculated from both the mass
lensing data and the lowest energy X-ray flux. Since Figures 8(a)

8
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(a) (b)

Figure 9. Panel (a), reproduced from Bailin & Steinmetz (2005), shows the best-fit triaxiality ratios of the two clusters, as compared to N-body simulations (dominated
by lower mass clusters), with our simulation results overlaid as red ellipses; c/a = P and b/c = Q in the notation of Table 1. The extent of the ellipses are 1σ errors;
the left-hand ellipse is the main cluster, while the right-hand ellipse is the bullet cluster. Panel (b) shows the path of the collision, as seen in the plane of the sky,
illustrating the initial orientations of the two ellipsoids. The red dots indicate the path of the dark matter centroids.

(A color version of this figure is available in the online journal.)

and (b) are from the same simulation (using the parameters in
Table 1), only the alignment to the observational data is different
between these two figures. The value of χ2 = 2.04 obtained in
Figure 8(b) shows that the quality of the fit using only mass
lensing data is degraded slightly when the alignment is chosen
to give the best simultaneous fit including the X-ray flux as
described below.

Figure 9(a), reproduced from Bailin & Steinmetz (2005),
shows how the best fit triaxiality parameters given in Table 1
compare to those found in an analysis of large N-body sim-
ulations of structure growth. While the bullet cluster is well
within the normal population, the large triaxiality range of the
main cluster appears to make it much more unusual. This large
asymmetry may reflect a prior merger which took place in this
cluster. However, Schneider et al. (2012) have reported that the
ellipticity of galaxy clusters increases as the mass increases, up
to a mass of 2 × 1014 M�, so that our value of P ≡ c/a = 0.35
for the massive main cluster seems not to be an outlier. This
and other aspects of the dark matter initial conditions will be
discussed in the context of ΛCDM cosmology in a companion
paper, in preparation.

Figure 9(b) shows the collision as viewed from our perspec-
tive, and is intended to help visualize the orientations of the
cluster ellipsoids. The best-fit relative velocity vector between
the bullet cluster and the main cluster is inclined approximately
10◦ to the plane of the sky. This best-fit radial velocity has
the bullet cluster dark matter centroid receding from us at
837 km s−1 relative to the main cluster dark matter centroid.
This is to be compared with the radial velocity analysis of
Barrena et al. (2002), who found that the bullet subcluster
galaxies have a velocity offset of 616 ± 80 km s−1 relative
to the main cluster galaxies in the main cluster’s rest frame. Our
simulation makes a prediction for the distribution of velocities
and their variances as a function of position in the sky, so a more
detailed comparison to the current full data set is warranted to
determine whether the discrepancy (about 2.7σ with the Barrena
et al. errors) is significant.

4.3.2. X-Ray Flux

Simultaneously fitting the mass lensing data and the X-ray
flux data is more difficult than fitting the mass lensing alone,
which is not surprising given the complexity of the baryonic
physics and possible systematic errors in the mass lensing
reconstruction. Figures 10(a)–(c) show the fit to the X-ray fluxes
in the three different energy bins. Figure 11(a) shows the X-ray
flux from different slices through the system, on a log scale, and
Figure 11(b) shows the location of the shock; these two plots
are intended to show how well we have captured the location
and shape of the shock. The fit is reasonable, and in particular
Figure 11(a) shows that the X-ray flux is well modeled over
more than two orders of magnitude. However, the χ2 calculated
only from the lowest energy X-ray data has a value of 5.68, so
this fit is not nearly as good as the mass lensing fit.

The X-ray flux morphologies are found to be quite sensitive
to the details of the initial baryon distributions, and the initial
distributions which give the best fit are shown in Figure 12(a).
It is important to note that the temperatures plotted here are
effective temperatures including the effects of non-thermal
pressure, and are therefore higher than the true temperatures,
as discussed in Sections 3.6 and 4.3.3. To see whether our
profiles are reasonable, we turn to the extensive measurements of
single galaxy clusters which have been done, including McCourt
et al. (2012), Leccardi & Molendi (2008), and Simionescu
et al. (2011). Figure 12(b) shows measured results of cluster
temperature profiles from Leccardi and Molendi, which are seen
to be qualitatively similar to our initial temperature profiles.

4.3.3. SZ Effect, Plasma Temperature,
and Role of Non-thermal Pressure

As discussed in Section 3.6, we find it necessary to explicitly
include a fudge factor to account for effects of non-thermal
pressure in order to correctly describe some data sets. We
describe the non-thermal pressure with a single parameter fntp
which we take to be constant in space and time. Not including

9
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(a) 500-2000eV (b) 2000-5000eV (c) 5000-8000eV

Figure 10. Best-fit result for the X-ray flux.

(A color version of this figure is available in the online journal.)

(a) 500-2000eV Log scale (b) 500-2000eV Edge detection

Figure 11. Best-fit result for the X-ray flux in the range of 500–2000 eV. The left-hand plot has slices on a log scale at three different angles. The right-hand plot uses
an edge detection algorithm to capture the location of the shock. These two plots show that the shock location and shape are reasonably well captured.

(A color version of this figure is available in the online journal.)

non-thermal pressure in the simulation has a minor impact on
the X-ray flux in the 0.5–2 keV band used to constrain the
parameters (see Figure 13), but leads to temperature and S-Z
effect comparisons which are far out of agreement with the
observations.

Figure 14(a) shows the S-Z effect data. Its sensitivity to the
non-thermal pressure is shown in Figure 14(b). The overall
structure of the S-Z observations is well matched, but clearly
the normalization cannot be predicted with accuracy until non-
thermal pressure is treated better. The offset between predicted
and observed emission peaks is similar to the net offset between
predicted and observed peaks in X-ray and mass lensing peaks;
whether any significance can be attached to that is under study.

Figure 15(a) shows the predicted plasma temperature av-
eraged along the line of sight in each pixel, which is com-
pared to the map extracted from the X-ray measurements by M.
Markevitch using the procedure described in Markevitch et al.
(2000) and kindly provided to us. The temperature uncertainty
is said to have a median value of 1.5 keV (M. Markevitch 2011,
private communication), but note that the extracted temperature

along a given line of sight is susceptible to large variations due to
Poisson statistics in the high-energy X-ray band with the result
that the observational map contains a great deal of noise. There-
fore, only large-scale features should be compared to the predic-
tions. On the simulation side, non-thermal pressure is important
for the high-energy X-ray band, and thus the overall scale of the
temperature map is uncertain, as seen in Figure 15(b) showing
the sensitivity of the temperature map to the non-thermal pres-
sure. Nonetheless, the qualitative features of hot, low-density
gas leading a dense cold core are clear in the predictions and also
visible as a general pattern underlying the noise in the extracted
temperature map.

Going forward, it is clear that treating the non-thermal
pressure as a constant ratio relative to the thermal pressure is
too simplistic and we plan to improve our treatment, as will be
discussed in Section 5.

4.3.4. Role of Magnetic Field and Radio Halo Prediction

As noted above, it is non-trivial to accurately match the
mass lensing reconstruction while simultaneously accurately
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(b)(a)

Figure 12. Initial best-fit baryon profiles of the two clusters, and comparison of our initial temperature profiles to a large sample of X-ray clusters. Panel (b) is
reproduced from Leccardi & Molendi (2008); black points are the sample mean and the dotted lines are the 1σ scatter. Our initial temperature profiles are qualitatively
similar. (a) Baryon profiles of the two cluster; “main” cluster on the left, “bullet” cluster on the right. (b) Temperature profiles of measured clusters.

(A color version of this figure is available in the online journal.)

(a) With non-thermal pressure. (b) No non-thermal pressure.

Figure 13. Impact of the non-thermal pressure on the X-ray flux from 500–2000 eV.

(A color version of this figure is available in the online journal.)

reproducing the X-ray flux morphology. The inclusion of
magnetic fields is important for achieving a good description.
Figure 16 shows that, given a good fit to the mass lensing
distributions, the baryon density peaks (and their associated
X-ray flux peaks) without the magnetic field tend to be “ahead”
of their observed locations. This requires some added pressure
on the baryons in order to retard the motion of the baryon
density peaks to agree with the observations. We have achieved
this with a combination of increased magnetic field and added
viscosity, both of which retard the motion of the baryon peaks.
Attempts to achieve alignment of the various peaks with only the
addition of the magnetic field are not successful, and the addition
of the viscosity term is required. Even with these components

added, however, the reproduction of the shapes of the regions of
high X-ray flux (see Figures 10(a)–(c)), while close, is still not
completely accurate.

While the best-fit magnetic field found here does not play a
dominant dynamical role, the details of the initial magnetic field
distribution (see Section 3.5) do impact the X-ray flux results.
To further explore whether the magnetic fields found here are
reasonable, we calculated the radio halo emission, and compared
this to the measurements of Liang et al. (2000). As detailed in
Appendix A.3.5, we use a simple model where a population
of relativistic electrons is taken to be in equipartition with the
magnetic field. This population follows a power-law distribution
with power-law exponent p (see Equation (A4)), and produces
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(a) With non-thermal pressure. (b) No non-thermal pressure.

Figure 14. Fit results for the S-Z temperature decrement, with and without the impact of non-thermal pressure. The contour plot color saturation in panel (b) results
from ensuring all plots are on the same scale.

(A color version of this figure is available in the online journal.)

(a) With non-thermal pressure. (b) No non-thermal pressure.

Figure 15. Fit results for the plasma temperature with and without the impact of non-thermal pressure. The contour plot color saturation in panel (b) results from
ensuring all plots are on the same scale.

(A color version of this figure is available in the online journal.)

a radio flux with spectral index s (see Equation (A9)), where p
and s are related by Equation (A10). Figure 17 shows the fit to
the radio halo data using a typical magnetic field as determined
from the collision dynamics; it is to be emphasized that since
the initial B field is randomly generated, a detailed fit is not
the goal: reproducing the general magnitude and location of the
radio emissions is the best that can be expected. The value of
the power-law exponent p is fairly tightly constrained to a value
of p ∼ 3.6, as seen in Figure 18, which shows that this value is
needed in order to reproduce the magnitude of the observed radio

emissions. This predicts a value of radio emission spectral index
s ∼ 1.3, which is encouragingly close to the value of 1.2–1.3
measured by Liang. The fact that the value of the magnetic field
which is required to give the proper alignment of the X-ray
intensity peaks is consistent with the radio halo emission lends
confidence to the model. Future work will explore this further
to see if modifications of the initial B field or improvements to
the radio emission model (Appendix A.3.5) can improve this fit
further. Figure 19 shows the magnetic field amplification which
takes place during the collision.
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(a) Mag = 61µG. (b) Mag = 0.01µG.

Figure 16. Impact of magnetic field on the X-ray flux in the range of 500–2000 eV. The magnetic field pressure impacts the location of the X-ray peaks.

(A color version of this figure is available in the online journal.)

Figure 17. Predicted radio flux, as compared to observations by Liang et al.
(2000) The subpanels of each plot are as described in Figure 8(a).

(A color version of this figure is available in the online journal.)

5. DISCUSSION

The fit between the observations and the simulation, while
far from perfect, is remarkably good. The physics incorporated
into the simulations is conventional, and the assumed initial
conditions are generally quite reasonable as compared to known
galaxy clusters. The best-fit baryon fraction values (within R200)
of the initial clusters (parameters GF1 and GF2 in Table 1—best-
fit values of 19% ± 2% and 17% ± 2%) are close to the ΛCDM
average value. The nine-year Wilkinson Microwave Anisotropy
Probe results (Hinshaw et al. 2013), for example, give a ratio

of Ωb/Ωm of 16.5% ± 2.5%, while the recent Planck results
(Planck Collaboration et al. 2013) give a ratio of Ωb/Ωm of
15.4% ± 0.5%. Further work is needed to determine whether
the slightly higher baryon fraction values we find are due to a
deficiency of our modeling, such as missing sub-grid physics,
or whether the baryon fraction in these clusters is actually
enhanced over the universe-average values. The prime driver in
the overall gas fraction normalizations is the X-ray luminosity,
which ∼n2, so including expected small-scale inhomogenieties
would plausibly result in lower GFs, as well as decrease the
extracted metallicity which is presently somewhat high. In
the next phase of the work, a variety of refinements will be
explored.

We can compare the quality of the fit achieved here to that of
the earlier simulation studies of Springel & Farrar (2007) and
Mastropietro & Burkert (2008). As noted in the Introduction,
those works took a different approach of trying to fit some
key separations between features, and did not explore such a
large range of initial conditions as we have done. Nonetheless,
we can use the initial conditions reported in those papers in
our simulation, and compare to the observations using our
techniques. The value of the figure-of-merit parameter χ2

calculated from mass lensing and the lowest energy X-ray data
is 3.92 for our best fit initial conditions, 13.67 for Springel and
Farrar, and 19.93 for Mastropietro and Burkert. The comparison,
shown in Figures 20 and 21, shows the clear improvement in
fitting the data that we have achieved.

Although the fits we have obtained are good and they are a
considerable improvement over earlier attempts, it is clear that
they could be improved. Figure 22 shows the contributions to the
total χ2 value (i.e., the residuals) over the 2D simulation plane,
allowing the regions where the fit is poorest to be identified.
Some directions of future development to improve the fidelity
of this analysis are as follows.

1. The shape of the X-ray flux emission is sensitively depen-
dent on the details of the baryon distribution. The present
analysis assumes that the baryons in the initial clusters are
in hydrostatic equilibrium, so that the shape of the baryon
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(a) P = 3.4 (b) P = 3.6 (c) P = 3.8

Figure 18. Impact of the spectral index parameter p. A value of p = 3.6 best captures the magnitude of the radio halo flux. The contour plot color saturation in panel
(a) results from ensuring all plots are on the same scale.

(A color version of this figure is available in the online journal.)

Figure 19. Top panel: log(baryon density in g cm−3) plotted in color; dark matter density overlaid in white contours. Middle panel: log(gas temperature in keV).
Bottom panel: log(|B|) in Gauss.

(A color version of this figure is available in the online journal.)
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(a) This work (b) Springel and Farrar [2] (c) Mastropietro and Burkert [3]

Figure 20. Mass lensing fits as compared to past simulation work. χ2 calculated from mass lensing and lowest energy X-ray data as described in the text is 3.92 in
this work, 13.67 for Springel and Farrar, and 19.93 for Mastropietro and Burkert.

(A color version of this figure is available in the online journal.)

(a) This work (b) Springel and Farrar [2] (c) Mastropietro and Burkert [3]

Figure 21. Lowest energy X-ray fits as compared to past simulation work. χ2 calculated from mass lensing and lowest energy X-ray data as described in the text is
3.92 in this work, 13.67 for Springel and Farrar, and 19.93 for Mastropietro and Burkert.

(A color version of this figure is available in the online journal.)

Figure 22. χ2 value calculated for each data set alone, with the location of the regions of poorest fit (i.e., the residuals) over the 2D simulation plane shown in the
colored contours.

(A color version of this figure is available in the online journal.)
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density contours tracks the equipotential contours (see
Section 3.2). Lau et al. (2011) have studied this in detail,
and found that this approximation breaks down in the clus-
ter central regions, where the dense gas can be rotationally
supported in addition to being pressure supported. Since
it is these dense gas regions that contribute most heavily
to the X-ray emissions, an enhancement along these lines
could significantly improve the X-ray fits. An effort along
those lines is underway.

2. Our treatment of non-thermal pressure can clearly be
improved. A phenomenological approach would be to take
the non-thermal pressure to be a dynamical variable which
varies in space and time, with scaling parameters to be
found from the fit. However, a more physical approach is to
attempt to include the sources of the non-thermal pressure,
be it turbulent fluid motions, cosmic ray pressure, or some
other phenomenon. Including fluid motion in the baryon
initialization as discussed in the previous point may also
reduce the need for non-thermal pressure to some extent.

3. While our results with inclusion of the magnetic field
encourage us that it may be possible to constrain the cluster
magnetic field, much work is needed before this can be
done. In particular, the coherence length of the initial
magnetic field has an effect on the structure and growth
of the magnetic fields during the collision, and this is being
explored. Furthermore, the required level of magnetic fields
is likely related to the amount of non-thermal pressure,
so the reliability of the inferred magnetic fields can only
be settled after a more physical model of the non-thermal
pressure has been developed.

Finally, more and better observational data will be a valuable
addition to the modeling efforts. Our results depend heavily
on having an accurate reconstruction of the current mass
distribution. Since the X-ray flux is proportional to the square
of the baryon density, and the baryon density depends on the
dark matter density, small changes in the mass distribution
lead to large changes in the calculated X-ray flux. Errors in
the mass reconstruction will therefore lead to errors in our
determination of the optimal initial conditions. To constrain the
magnetic fields, polarized radio emission and Faraday rotation
measures of sources behind the bullet—especially strongly
lensed ones!—would help the effort immensely.

6. CONCLUSIONS

We have presented a detailed simulation of the bullet cluster
collision, which gives a 2D fit to observational data spanning an
impressively wide range of wavelengths. The major conclusions
of this work are as follows.

1. A simple initial configuration of two triaxial clusters
fits the observed data for mass lensing quite well. The
triaxialities required are compatible with those seen in
N-body simulations.

2. The infall velocities required to explain the observations
are not excessive compared to ΛCDM simulations. Further
comparison to cosmological predictions will be presented
in a companion paper, in preparation.

3. The observed X-ray flux is quite sensitive to the baryon
structure and can be reproduced with reasonable assump-
tions for the initial baryon distributions, although the fits
are not as good as the fits to the mass lensing data only. The
best-fit structure of the initial clusters is similar to other
observed clusters.

4. A significant amount of non-thermal pressure, roughly
equal to the thermal pressure, is required in order to fit
plasma temperature and S-Z effect observations.

5. Addition of magnetic fields to the simulations improves the
simultaneous fit of the mass lensing and X-ray flux data, and
the magnetic fields required are in rough agreement with
what is required to explain the radio halo observations.
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and advice from a great many colleagues—too many to list
them all. Volker Springel and Yuval Birnboim provided support
for getting started with the initial simulations. Eugene Vasiliev
provided the SMILE software, and we thank him for that and
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sis was done using the code known as yt (Turk et al. 2011),
which greatly simplifies analysis of AMR output. Thanks also
to Marusa Bradac for providing the mass lensing data, Tom
Plagge for providing the S-Z data and Maxim Markevitch for
providing the extracted temperature map. Most of the simu-
lations were done under GID S1248 on the NASA Pleiades
supercomputer system, for which we gratefully acknowledge
support. Computations described in this work were performed
using the Enzo code developed by the Laboratory for Com-
putational Astrophysics at the University of California in San
Diego (http://lca.ucsd.edu). This work has been supported in
part by grants NNX08AG70G, NSF PHY-1212538, NSF PHY-
0900631, and NSF PHY-0970075.

APPENDIX

SIMULATION DETAILS

This appendix describes some of the details of the simulation
tools and simulation conditions that are used.

A.1. Simulation Conditions

We evaluated two simulation tools for this work,
Gadget (Springel 2005), an SPH code, and Enzo (The Enzo
Collaboration et al. 2014), a grid-based hydro code with adap-
tive mesh refinement (AMR). Both simulators use discrete par-
ticles for the dark matter, but differ in the simulation of the
hydrodynamics. The two simulators were found to give similar
results, but ultimately, the Enzo simulator was chosen when the
need for incorporation of MHD into the simulations became
apparent. A summary of the key simulation conditions is shown
in Table 2.

A.2. Resolution

To verify that the simulations are of sufficiently high res-
olution to capture the main features of the cluster collision,
simulations using the optimal initial conditions are run at higher
and lower resolutions. For the lower resolution simulation, the
number of dark matter particles is reduced by a factor of four,
and the minimum grid size is increased by a factor of two. For
the higher resolution simulation, the number of dark matter par-
ticles is increased by a factor of two, and the minimum grid size
is decreased by a factor of two. All of these values are relative
to the nominal values in Table 2. Figures 23 and 24 summarize
the results. While there are some slight changes, especially in
resolving the right-hand X-ray peak, the basic features of the
simulation are unchanged, confirming that the main conclusions
are not impacted by the resolution of the simulation.
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(a) Resolution reduced by 4x (b) Standard Resolution (c) Resolution increased by 2x

Figure 23. Impact of resolution on mass lensing fit.

(A color version of this figure is available in the online journal.)

(a) Resolution reduced by 4x (b) Standard Resolution (c) Resolution increased by 2x

Figure 24. Impact of resolution on X-ray intensity fit.

(A color version of this figure is available in the online journal.)

A.3. Calculation of Observables

This section describes the procedures used to calculate the
observables from the simulation variables. All cosmological
calculations assume the following parameters:

H0 = 70 km s−1 Mpc−1 Ωm = 0.30 ΩΛ = 0.70. (A1)

With these parameters, the Bullet Cluster redshift of z = 0.296
implies a luminosity distance of 1.53 Gpc.

A.3.1. Lensing Mass

Calculation of the lensing mass for comparison to the lensing
data is straightforward. The baryon mass is a conserved quantity
in the simulation, while the dark matter consists of discrete
particles of fixed mass. We sum the dark matter and baryon mass
separately along the line of sight for each pixel, then add the
two together to give the total lensing mass. From the standpoint
of this calculation, stars are indistinguishable from dark matter.

17



The Astrophysical Journal, 787:144 (19pp), 2014 June 1 Lage & Farrar

Figure 25. Plasma emissivity in photons cm−3 s−1/(n2
p), where np is the plasma mass density, as calculated using the APEC code for different metallicity choices.

The metallicity Z is given as a fraction of solar. The left, center, and right plots are for energy bins of 500 eV–2000 eV, 2000 eV–5000 eV, and 5000 eV–8000 eV,
respectively.

(A color version of this figure is available in the online journal.)

This should be a good approximation because the stellar mass
accounts for only a few percent of the total baryonic mass in
extremely massive clusters (Gonzalez et al. 2013).

A.3.2. Calculation of X-Ray Flux

As discussed above, the calibrated Chandra data is the flux of
X-ray photons in photons (cm2 s)−1 in the given band of ener-
gies. In the temperature range of these plasmas (approximately
1–50 keV), the radiation includes both thermal bremsstrahlung
and line emission, and is a complex function of temperature and
metallicity. In this work, we use the APEC code (Fruscione et al.
2006) to build a look-up table of the plasma emissivity in each
energy bin (with the energy bin limits blueshifted back to the
source appropriately) as a function of temperature and metal-
licity; the resulting emissivity is shown in Figure 25. Since the
plasma is optically thin, we calculate the total flux by summing
the flux from each volume element along the line of sight.

We use the same calculation of plasma emissivity to calculate
the rate of gas cooling during the simulation by building a look-
up table that gives the cooling rate as a function of temperature
and metallicity. This is done by slightly modifying the Enzo
code to use this look-up table instead of the built-in cooling
calculation. Because emission at all energies contribute to the
plasma cooling, we sum the X-ray emissivity across all energies
for this cooling calculation.

A.3.3. Plasma Temperature

Calculation of a 2D map of the plasma temperature to
compare to observed temperatures is not trivial, since both the
plasma density and the plasma temperature vary along the line of
sight. In principle a spectroscopic temperature should be used,
where the X-ray flux is integrated along the line of sight, and the
resulting spectrum fit with a temperature for each pixel, but this
is computationally expensive. We find that an X-ray emission
weighted temperature gives almost the same result, and is much
faster, so we use this procedure to produce the temperature
maps (for example, Figure 15(a)). In other words, we calculate

the temperature in each pixel by

T =
∫ ζmax

ζmin
T (ζ ) ∗ ε(np(ζ ), T (ζ ), Z)dζ∫ ζmax

ζmin
ε(np(ζ ), T (ζ ), Z)dζ

, (A2)

where the integration is along the line of sight, ζmin and ζmax are
the boundaries of the simulation volume, and the plasma emis-
sivity ε(np, T , Z) is calculated as described above. We use Emin
and Emax values of 500 eV and 8000 eV for this purpose. We
emphasize that these temperature maps are not used for opti-
mization or calculation of χ2, but only for comparison purposes.

A.3.4. Calculation of S-Z Effect

Inverse Compton scattering of CMB photons by the hot
plasma leads to a distortion of the CMB blackbody spectrum. A
good approximation for optically thin, non-relativistic plasmas
such as these is that the distortion results in a slight modification
of the CMB temperature as given by the following equation
(Birkinshaw 1999):

ΔT

TCMB
= −2σT

∫
kBT (ζ )

mec2
ne(ζ )dζ. (A3)

Here the integration is along the line of sight, and σT is
the Thomson scattering cross-section. Since the X-ray flux
is proportional to n2

e and is relatively independent of T, and
the S-Z effect ΔT is proportional to neT , the two data sets
together allow an independent determination of plasma density
and temperature. For the Bullet Cluster, the S-Z effect has a
maximum ΔT of approximately 400 μK.

A.3.5. Radio Halo

Galaxy clusters, especially those undergoing violent colli-
sions, are known to have extended radio halos. The source of
the radio emission is less well understood than the source of the
X-ray emission, but is believed to be a population of relativistic
electrons which emit synchrotron radiation as they spiral around
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the cluster magnetic field lines (Govoni & Feretti 2004). Follow-
ing closely Rybicki & Lightman (2004), we use the following
model.

1. The population of relativistic electrons follows a power-law
distribution (we assume p > 2):

N (γ )dγ = Cγ −pdγ. (A4)

2. The population of relativistic electrons is in equipartition
with the magnetic field, meaning that

∫ ∞

0
γmec

2Cγ −pdγ = B2

8π
. (A5)

This implies

C = (p − 2)B2

8πmec2
. (A6)

With these assumptions, the intensity of radio emission
depends only on the magnetic field intensity B and the power-
law exponent p, which we assume constant throughout the
simulation volume. After averaging over the randomly oriented
direction of the magnetic field, the radio power is given by

P (ν)dν =
√

3π

32π2(1 + z)

e3B3

(mec2)2
f (p)

×
(

2πmecν(1 + z)

3eB

)−(p−1)/2

dν, (A7)

where the function f (p) is given by the following expression:

f (p) = (p − 2)

(p + 1)

Γ(p+5
4 )

Γ(p+7
4 )

Γ
(

p

4
+
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12

)
Γ

(
p

4
− 1

12

)
; (A8)

f (p) ≈ 0.3 for typical values of p(2.5 < p < 4.0). For
comparing to observations, it is important to note that the
spectral index of the electron energy, p, (Equation (A4)) is
related to the spectral index of radio emission, s,

f (ν)dν = Cν−sdν, (A9)

by the following equation (Rybicki & Lightman 2004):

s = p − 1

2
. (A10)

We find the power-law exponent to be tightly constrained to
a value of p ≈ 3.6, as discussed in Section 4.3.4.

REFERENCES

Bailin, J., & Steinmetz, M. 2005, ApJ, 627, 647
Barrena, R., Biviano, A., Ramella, M., Falco, E. E., & Seitz, S. 2002, A&A,

386, 816
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed.; Princeton:

Princeton Univ. Press), 920
Birkinshaw, M. 1999, PhR, 310, 97
Bliznyuk, N., Ruppert, D., Shoemaker, C. A., et al. 2008, J. Comput. Graph.

Stat., 17, 270
Bode, P., Ostriker, J. P., Cen, R., & Trac, H. 2012, arXiv:1204.1762
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