Measurements and Simulations of the Brighter-Fatter Effect

Craig Lage

October 23, 2015

Introduction

- Forward Modeling of Spot images to measure B-F effect.
- Simulations of B-F effect.
- Measurement Simulation comparison.
- Modeling Stored Charge Self-Consistently
- What are the Free Parameters?
- How to Model Saturation Effects?
- Conclusions and Next Steps

LSST Optical Simulator

Typical Image of 30 micron Spots

Forward modeling of Discrete Spots

- Use sextractor to identify a list of spots.
 - Typically 1000-2000 in one CCD segment depending on size of window.
 - Use sextractor central pixel location, but not size or exact offset within pixel.
 - Use a constant window ("postage stamp") for all spots. Using 9x9 pixels.
- Assume all spots have the same shape, but allow variable peak intensity and offset within central spot.
 - Calculate first moment of postage stamp to determine offset within central pixel.
- Assume a 2D Gaussian, calculate expected signal in each pixel

• I = I₀(erf(
$$\frac{\mathbf{x}_{\max}}{\sqrt{2}\sigma_{\mathbf{x}}}$$
) - erf($\frac{\mathbf{x}_{\min}}{\sqrt{2}\sigma_{\mathbf{x}}}$)) * (erf($\frac{\mathbf{y}_{\max}}{\sqrt{2}\sigma_{\mathbf{y}}}$) - erf($\frac{\mathbf{y}_{\min}}{\sqrt{2}\sigma_{\mathbf{y}}}$))

• Find (σ_x, σ_x) which minimizes: $\sum_{N \text{spots}} \sum_{x,y} (\text{Measured}_{n,x,y} - \text{Calculated}_{n,x,y})^2$

• Brief review of Poisson Solver.

Diffusion model

• Addition of code to simulate B-F effect.

Typical Simulation $100 \mu m$ Cube.

- $100\mu m$ Cube. 10 X 10 pixels in X and Y.
- 32 grid cells per pixel cell size = 0.31 μ .

Pixel Array Summary Plot

10/33

Potentials and Charges - Z-slice at Pixel Center

Diffusion Model

• Mobility: $\mu(E, T)$ calculated from Jacobini model

•
$$\mu = 1584 \frac{\mathrm{cm}^2}{\mathrm{V-sec}}$$
 at $\mathrm{E} = 6000 \frac{\mathrm{V}}{\mathrm{cm}}$

Collision time:

•
$$au = rac{\mathrm{m}_{\mathrm{e}}^{*}}{\mathrm{q}_{\mathrm{e}}}\mu$$

- τ typically about 0.9 ps.
- $\bullet~\delta t$ drawn from exponential distribution with mean of τ

•
$$V_{\rm th} = \sqrt{\frac{3kT}{2m_e^*}}$$

- $V_{\rm th} \approx \mu E$
- Each thermal step in a random direction in 3 dimensions.
- Typically about 1000 steps to propagate to the collecting well.

Diffusion Model Check-out - Step Function

Diffusion Model Check-out - Small (0.1 micron) Spot

FWHM = 4.6 microns, in agreement with Fe measurements.

Impact of electron diffusion

Simulation Strategy for B-F effect.

- Solve Poisson's equation for postage stamp with all pixels empty.
- Choose a random location within the central pixel.
- Determine starting locations for N electrons in a 2D Gaussian spot.
- Propagate these electrons down to their collecting gates.
- Re-solve Poisson's equation with these wells now containing the appropriate charge.
- Repeat with N more electrons.
- I have been using 10,000 electrons per step, which places about 1000 electrons in the central pixel, so about 100 iterations are needed to fill the central pixel.
- In practice, repeat for more than one spot (typical 256), each with a different central location.

Typical Simulation - 256 Spots - Forward modeled with same code as measurements.

B-F Slopes vs VBB, Measurements and Simulations -Assumed Charge Location

Vertical location of collected charge impacts BF slopes

Collected Charge at z = 1.4 um Slopes = 2.2, 2.6% / 50k e-

 $\begin{array}{l} \mbox{Collected Charge at } z = 0.8 \mbox{ um} \\ \mbox{Slopes} = 1.1, \ 1.2\% \ / \ 50 \mbox{ e-} \end{array}$

• After propagating electron down to collecting well, we know it's location in three dimensions.

• Continue stepping for some time (100-1000 scattering times) after reaching the collecting well to make sure location has converged.

• Keep this location and use it to calculate the new potentials.

Movie of Pixel Filling - First 10,000 Electrons

Movie of Pixel Filling - Two Collecting Phases

Well Filling with Two Collecting Phases

Movie of Pixel Filling - One Collecting Phase

Well Filling with One Collecting Phase

B-F Slopes vs VBB, Measurements and Simulations -Self-Consistent Charge Location

What are the Free Parameters?

- Diffusion Model:
 - None Well established Silicon parameters.
- Potentials at Boundaries:
 - None Applied voltages and geometries are known.
- Charges in Silicon Bulk:
 - Total Charge, Depth, and Profile in Channel region
 - Total Charge, Depth, and Profile in Channel Stop region
 - Is Channel Stop region depleted or are there free holes?
 - Can a device simulator like Silvaco help pin these down?
 - If not, we will tune them in based on CCD measurements.

Measured Saturation Effects

As exposure increases, STA3800 shows saturation at \approx 180,000 electrons/pixel.

Electrons not just being re-distributed, but being lost!

Modeling Saturation Effects

- At \approx 200,000 electrons, buried channel disappears.
- Potential maximum (where electrons go) contacts the surface.
- Subsequent charge is lost, either through trapping or recombination at the surface.

Performance Benchmark

- NERSC Edison 1 core
- 360^3 grid grid cell 0.31 μ
- 10,000 electrons

Initialize	Poisson Solution	Calculate E Fields	Trace 10,000 electrons
4 sec.	40 sec.	3 sec.	27 sec.

• So a B-F run with 256 spots, 3 million electrons (300,000 in central spot) takes about 6 hours.

- Conclusions:
 - Simulations are reproducing major aspects of B-F measurements:
 - Magnitude of slopes.
 - Difference between X and Y slopes.
 - Change in slopes with Vbb.
 - While there are some free parameters, we should be able to narrow these down with more knowledge of the CCD and more measurements.
 - Use Silvaco to better determine doping profiles?
- Next Steps
 - More measurements and simulations, especially:
 - Improve modeling of saturation effects.
 - One vs Two collecting phases.
 - Impact of parallel gate voltages.
 - Different spot sizes.
 - Get more people using the code: Latest version (https://github.com/craiglagegit/Poisson_CCD16)

Back-Up Slides Description of Numerics

Solving Poisson's Equation on a Grid

$$\begin{aligned} \nabla^2 \varphi &= \rho \\ \frac{\partial^2 \varphi_{i,j,k}}{\partial x^2} &= \frac{(\varphi_{i+1,j,k} - \varphi_{i,j,k}) - (\varphi_{i,j,k} - \varphi_{i-1,j,k})}{h^2} \\ (\varphi_{i+1,j,k} + \varphi_{i-1,j,k} + \varphi_{i,j+1,k} + \varphi_{i,j-1,k} + \varphi_{i,j,k+1} + \varphi_{i,j,k-1} - 6*\varphi_{i,j,k}) = h^2 * \rho_{i,j,k} \\ \varphi_{i,j,k} &= \frac{1}{6} * (\varphi_{i+1,j,k} + \varphi_{i-1,j,k} + \varphi_{i,j+1,k} + \varphi_{i,j-1,k} + \varphi_{i,j,k+1} + \varphi_{i,j,k-1} - h^2 * \rho_{i,j,k}) \\ \varphi_{i,j,k}^{(n+1)} &= \frac{1}{6} * (\varphi_{i+1,j,k}^{(n)} + \varphi_{i-1,j,k}^{(n)} + \varphi_{i,j+1,k}^{(n)} + \varphi_{i,j-1,k}^{(n)} + \varphi_{i,j,k-1}^{(n)} - h^2 * \rho_{i,j,k}) \end{aligned}$$

- Conceptually, we simply iterate until convergence.
- In practice, it converges very slowly millions of iterations are required.

Multi-Grid Methods to the Rescue - I

- Long wavelength modes are determined at the coarse grid.
- Iterations at each finer grid only need to be long enough to determine the short wavelength modes.

Multi-Grid Methods to the Rescue - II

Finest Grid	Cells/Pixel	Grid Spacing	Time (laptop)
160^{3}	16	0.625 micron	5 sec.
320^{3}	32	0.3125 micron	40 sec.
640^{3}	64	0.15625 micron	5 min.

- Each successive step down is ≈ 8 times faster than the next larger grid.
- In practice, I iterate the coarsest grid to machine precision, then 2X fewer iterations at each finer grid, ending with 128 iterations at the finest grid.