Measurements and Simulations of the Brighter-Fatter

Effect

Craig Lage

October 23, 2015

Outline

- Introduction
- Forward Modeling of Spot images to measure B-F effect.
- Simulations of B-F effect.
- Measurement - Simulation comparison.
- Modeling Stored Charge Self-Consistently
- What are the Free Parameters?
- How to Model Saturation Effects?
- Conclusions and Next Steps

LSST Optical Simulator

Typical Image of 30 micron Spots

[

\#

\square
π
\square

Forward modeling of Discrete Spots

- Use sextractor to identify a list of spots.
- Typically 1000-2000 in one CCD segment depending on size of window.
- Use sextractor central pixel location, but not size or exact offset within pixel.
- Use a constant window ("postage stamp") for all spots. Using 9×9 pixels.
- Assume all spots have the same shape, but allow variable peak intensity and offset within central spot.
- Calculate first moment of postage stamp to determine offset within central pixel.
- Assume a 2D Gaussian, calculate expected signal in each pixel
- $\mathrm{I}=\mathrm{I}_{0}\left(\operatorname{erf}\left(\frac{x_{\text {max }}}{\sqrt{2} \sigma_{\mathrm{x}}}\right)-\operatorname{erf}\left(\frac{\mathrm{x}_{\text {min }}}{\sqrt{2} \sigma_{\mathrm{x}}}\right)\right) *\left(\operatorname{erf}\left(\frac{y_{\text {max }}}{\sqrt{2} \sigma_{\mathrm{y}}}\right)-\operatorname{erf}\left(\frac{y_{\text {min }}}{\sqrt{2} \sigma_{\mathrm{y}}}\right)\right)$
- Find $\left(\sigma_{\mathrm{x}}, \sigma_{\mathrm{x}}\right)$ which minimizes:
$\sum_{\text {Nspots }} \sum_{x, y}\left(\text { Measured }_{n, x, y}-\text { Calculated }_{n, x, y}\right)^{2}$

Checks on Forward modeling

Multiply by 2.5 for electrons.

Initial B-F measurements

Brighter-Fatter - 30 micron Spots

Simulations of B-F effect.

- Brief review of Poisson Solver.
- Diffusion model
- Addition of code to simulate B-F effect.

Typical Simulation $100 \mu \mathrm{~m}$ Cube.

- $100 \mu \mathrm{~m}$ Cube. -10×10 pixels in X and Y .
- 32 grid cells per pixel - cell size $=0.31 \mu$.

Pixel Array Summary Plot

Rho, $z=0.78$

Phi, z = 2.66

Potentials and Charges - Z-slice at Pixel Center

Diffusion Model

- Mobility: $\mu(E, T)$ calculated from Jacobini model

- $\mu=1584 \frac{\mathrm{~cm}^{2}}{\mathrm{~V}-\mathrm{sec}}$ at $\mathrm{E}=6000 \frac{\mathrm{~V}}{\mathrm{~cm}}$
- Collision time:
- $\tau=\frac{\mathrm{m}_{\mathrm{e}}^{*}}{\mathrm{q}_{\mathrm{e}}} \mu$
- τ typically about 0.9 ps.
- $\delta \mathrm{t}$ drawn from exponential distribution with mean of τ
- $\mathrm{V}_{\mathrm{th}}=\sqrt{\frac{3 \mathrm{kT}}{2 \mathrm{~m}_{\mathrm{e}}^{*}}}$
- $\mathrm{V}_{\mathrm{th}} \approx \mu \mathrm{E}$
- Each thermal step in a random direction in 3 dimensions.
- Typically about 1000 steps to propagate to the collecting well.

Diffusion Model Check-out - Step Function

10^{8} electrons in initial step function - no E-field.

$$
\begin{gathered}
\operatorname{erf}\left(\frac{\mathrm{x}-\mathrm{x}_{1}}{\sqrt{4 \mathrm{D} \tau \mathrm{~N}_{\mathrm{steps}}}}\right)-\operatorname{erf}\left(\frac{\mathrm{x}-\mathrm{x}_{2}}{\sqrt{4 \mathrm{D} \tau \mathrm{~N}_{\mathrm{steps}}}}\right) \\
\mathrm{D}=\frac{\mathrm{kT}}{\mathrm{q}} \mu
\end{gathered}
$$

Diffusion Model Check-out - Small (0.1 micron) Spot

Electron Paths

Spot size at collection.
$\sigma=\sqrt{2 * \mathrm{D} * \mathrm{~T}_{\text {transit }}}=\sqrt{2 * \frac{\mathrm{kT}}{\mathrm{q}} \mu * \frac{\mathrm{~T}_{\mathrm{Si}}^{2}}{\mu \mathrm{~V}}}=\mathrm{T}_{\mathrm{Si}} \sqrt{\frac{2 \frac{\mathrm{kT}}{\mathrm{q}}}{\mathrm{V}}}=1.95 \mu$
FWHM $=4.6$ microns, in agreement with Fe measurements.

Impact of electron diffusion

Simulation Strategy for B-F effect.

- Solve Poisson's equation for postage stamp with all pixels empty.
- Choose a random location within the central pixel.
- Determine starting locations for N electrons in a 2D Gaussian spot.
- Propagate these electrons down to their collecting gates.
- Re-solve Poisson's equation with these wells now containing the appropriate charge.
- Repeat with N more electrons.
- I have been using 10,000 electrons per step, which places about 1000 electrons in the central pixel, so about 100 iterations are needed to fill the central pixel.
- In practice, repeat for more than one spot (typical 256), each with a different central location.

Typical Simulation - 256 Spots - Forward modeled with

 same code as measurements.

B-F Slopes vs VBB, Measurements and Simulations Assumed Charge Location

VBB:-30V - Measured

VBB:-60V - Measured

Vertical location of collected charge impacts BF slopes

${ }_{10}{ }^{\text {Baseline }}$ - Sigmax $=$ Sigmay $=$			
	10 Simuleted spots x Slope $=1.1$ \% per 50K e. Intercept $=1.012$ Y Slope -1.2 N per Sok e, irtercept -1.009		
1.08			
2.06			
$\begin{aligned} & \frac{\bar{x}}{1} 1.04 \\ & \frac{1}{2} \end{aligned}$			
1.00			
0.98			
0.96		000	Sigma-x Sigma-y
0			

Collected Charge at $\mathrm{z}=1.4 \mathrm{um}$ Slopes $=2.2,2.6 \% / 50 \mathrm{ke}$ -

Collected Charge at $z=0.8 \mathrm{um}$ Slopes $=1.1,1.2 \% / 50 \mathrm{k}$ e-

Self-Consistent Stored Charge Locations

- After propagating electron down to collecting well, we know it's location in three dimensions.
- Continue stepping for some time (100-1000 scattering times) after reaching the collecting well to make sure location has converged.
- Keep this location and use it to calculate the new potentials.

Movie of Pixel Filling - First 10,000 Electrons

Movie of Pixel Filling - Two Collecting Phases

Well Filling with Two Collecting Phases

Movie of Pixel Filling - One Collecting Phase

Well Filling with One Collecting Phase

Y-Z Slice

B-F Slopes vs VBB, Measurements and Simulations -Self-Consistent Charge Location

VBB:-30V - Measured

VBB:-60V - Measured

What are the Free Parameters?

- Diffusion Model:
- None - Well established Silicon parameters.
- Potentials at Boundaries:
- None - Applied voltages and geometries are known.
- Charges in Silicon Bulk:
- Total Charge, Depth, and Profile in Channel region
- Total Charge, Depth, and Profile in Channel Stop region
- Is Channel Stop region depleted or are there free holes?
- Can a device simulator like Silvaco help pin these down?
- If not, we will tune them in based on CCD measurements.

Measured Saturation Effects

As exposure increases, STA3800 shows saturation at $\approx 180,000$ electrons/pixel.

Electrons not just being re-distributed, but being lost!

Modeling Saturation Effects

- At $\approx 200,000$ electrons, buried channel disappears.
- Potential maximum (where electrons go) contacts the surface.
- Subsequent charge is lost, either through trapping or recombination at the surface.

Performance Benchmark

- NERSC Edison - 1 core
- 360^{3} grid - grid cell 0.31μ
- 10,000 electrons

Initialize	Poisson Solution	Calculate E Fields	Trace 10,000 electrons
4 sec.	40 sec.	3 sec.	27 sec.

- So a B-F run with 256 spots, 3 million electrons (300,000 in central spot) takes about 6 hours.

Conclusions and Next Steps

- Conclusions:
- Simulations are reproducing major aspects of B-F measurements:
- Magnitude of slopes.
- Difference between X and Y slopes.
- Change in slopes with Vbb .
- While there are some free parameters, we should be able to narrow these down with more knowledge of the CCD and more measurements.
- Use Silvaco to better determine doping profiles?
- Next Steps
- More measurements and simulations, especially:
- Improve modeling of saturation effects.
- One vs Two collecting phases.
- Impact of parallel gate voltages.
- Different spot sizes.
- Get more people using the code: Latest version (https://github.com/craiglagegit/Poisson_CCD16)

Back-Up Slides
 Description of Numerics

Solving Poisson's Equation on a Grid

$$
\begin{gathered}
\nabla^{2} \varphi=\rho \\
\frac{\partial^{2} \varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}}}{\partial \mathrm{x}^{2}}=\frac{\left(\varphi_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}}-\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\right)-\left(\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}}-\varphi_{\mathrm{i}-1, \mathrm{j}, \mathrm{k}}\right)}{\mathrm{h}^{2}}
\end{gathered}
$$

$$
\left(\varphi_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}}+\varphi_{\mathrm{i}-1, \mathrm{j}, \mathrm{k}}+\varphi_{\mathrm{i}, \mathrm{j}+1, \mathrm{k}}+\varphi_{\mathrm{i}, \mathrm{j}-1, \mathrm{k}}+\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}+1}+\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}-1}-6 * \varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\right)=\mathrm{h}^{2} * \rho_{\mathrm{i}, \mathrm{j}, \mathrm{k}}
$$

$$
\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}}=\frac{1}{6} *\left(\varphi_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}}+\varphi_{\mathrm{i}-1, \mathrm{j}, \mathrm{k}}+\varphi_{\mathrm{i}, \mathrm{j}+1, \mathrm{k}}+\varphi_{\mathrm{i}, \mathrm{j}-1, \mathrm{k}}+\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}+1}+\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}-1}-\mathrm{h}^{2} * \rho_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\right)
$$

$$
\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}}^{(\mathrm{n}+1)}=\frac{1}{6} *\left(\varphi_{\mathrm{i}+1, \mathrm{j}, \mathrm{k}}^{(\mathrm{n})}+\varphi_{\mathrm{i}-1, \mathrm{j}, \mathrm{k}}^{(\mathrm{n})}+\varphi_{\mathrm{i}, \mathrm{j}+1, \mathrm{k}}^{(\mathrm{n})}+\varphi_{\mathrm{i}, \mathrm{j}-1, \mathrm{k}}^{(\mathrm{n})}+\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}+1}^{(\mathrm{n})}+\varphi_{\mathrm{i}, \mathrm{j}, \mathrm{k}-1}^{(\mathrm{n})}-\mathrm{h}^{2} * \rho_{\mathrm{i}, \mathrm{j}, \mathrm{k}}\right)
$$

- Conceptually, we simply iterate until convergence.
- In practice, it converges very slowly - millions of iterations are required.

Multi-Grid Methods to the Rescue - I

- Long wavelength modes are determined at the coarse grid.
- Iterations at each finer grid only need to be long enough to determine the short wavelength modes.

Multi-Grid Methods to the Rescue - II

Finest Grid	Cells/Pixel	Grid Spacing	Time (laptop)
160^{3}	16	0.625 micron	5 sec.
320^{3}	32	0.3125 micron	40 sec.
640^{3}	64	0.15625 micron	5 min.

- Each successive step down is ≈ 8 times faster than the next larger grid.
- In practice, I iterate the coarsest grid to machine precision, then 2 X fewer iterations at each finer grid, ending with 128 iterations at the finest grid.

