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Introduction

Forward Modeling of Spot images to measure B-F effect.
Simulations of B-F effect.

Measurement - Simulation comparison.

Modeling Stored Charge Self-Consistently

What are the Free Parameters?

How to Model Saturation Effects?

Conclusions and Next Steps
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LSST Optical Simulator
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Typical Image of 30 micron Spots




Forward modeling of Discrete Spots

@ Use sextractor to identify a list of spots.

e Typically 1000-2000 in one CCD segment depending on size of window.

e Use sextractor central pixel location, but not size or exact offset within
pixel.

o Use a constant window ( “postage stamp”) for all spots. Using 9x9
pixels.

@ Assume all spots have the same shape, but allow variable peak
intensity and offset within central spot.

o Calculate first moment of postage stamp to determine offset within
central pixel.
@ Assume a 2D Gaussian, calculate expected signal in each pixel
o I =Tp(erf( X\/‘g;’;) erf( Xnin )) (erf( y‘"z’;) — erf( \Vf‘;‘ )
e Find (oy, 0x) which minimizes:
ZNspots nyy(Measuredn’X,y — Calculated,, x y)?




Checks on Forward modeling
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Multiply by 2.5 for electrons.
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Initial B-F measurements

Brighter-Fatter - 30 micron Spots
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@ Brief review of Poisson Solver.
o Diffusion model

@ Addition of code to simulate B-F effect.
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Fixed Voltage (~-50V) on Top Incoming Light

Free boundary
conditions on sides

Charges in bulk (normal derivative of phi = 0)

determined by
bulk doping and
Channel / Channel-stop
implants

Voltages on bottom as appropriate (next slides)

A
@ 100pm Cube. - 10 X 10 pixels in X and Y.

@ 32 grid cells per pixel - cell size = 0.31 u .
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Pixel Array Summary Plot
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Potentials and Charges - Z-slice at Pixel Center
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Diffusion Model

Vidt | uEdt

WEdt | Vidt

uk

Vtdt

uEdt

\Vtét

ot

Mobility: p(E, T) calculated from Jacobini
model

p = 158420 at E = 6000
Collision time:
;= me
M
T typically about 0.9 ps.
ot drawn from exponential distribution with

mean of 7

3kT
Vin = 2m*
Vth [ /,LE

Each thermal step in a random direction in
3 dimensions.

Typically about 1000 steps to propagate to
the collecting well.



Diffusion
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Diffusion Model Check-out - Small (0.1 micron) Spot

Electron Path Plot - Vertical Zoom = 0.1 CCD Pixel Plots. Grid = 320¥320%320.

Final e- Locations. Sigmax = 1.95 microns, Sigmay = 1.95 microns

100
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Spot size at collection.
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2 o kT
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FWHM = 4.6 microns, in agreement with Fe measurements.
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Simulation Strategy for B-F effect.

@ Solve Poisson’s equation for postage stamp with all pixels empty.

@ Choose a random location within the central pixel.

@ Determine starting locations for N electrons in a 2D Gaussian spot.
@ Propagate these electrons down to their collecting gates.

@ Re-solve Poisson’s equation with these wells now containing the
appropriate charge.

@ Repeat with N more electrons.

@ | have been using 10,000 electrons per step, which places about 1000
electrons in the central pixel, so about 100 iterations are needed to fill
the central pixel.

@ In practice, repeat for more than one spot (typical 256), each with a
different central location.
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Typical Simulation - 256 Spots - Forward modeled with
same code as measurements.

Brighter-Fatter - 256 Simulated Spots
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B-F Slopes vs VBB, Measurements and Simulations -
Assumed Charge Location
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Vertical location of collected

Phi-Collect Gate

Rho-Collect Gate

charge impacts BF slopes
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Self-Consistent Stored Charge Locations

o After propagating electron down to collecting well, we know it's
location in three dimensions.

e Continue stepping for some time (100-1000 scattering times) after
reaching the collecting well to make sure location has converged.

@ Keep this location and use it to calculate the new potentials.
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Well Filling with Two Collecting Phases

XY Slice Y-Z Slice

X-Z Slice
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Well Filling with One Collecting Phase

XY Slice Y-Z Slice

X-Z Slice
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B-F Slopes vs VBB, Measurements and Simulations -
Self-Consistent Charge Location
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What are the Free Parameters?

o Diffusion Model:
o None - Well established Silicon parameters.

@ Potentials at Boundaries:
e None - Applied voltages and geometries are known.

@ Charges in Silicon Bulk:

e Total Charge, Depth, and Profile in Channel region
Total Charge, Depth, and Profile in Channel Stop region
Is Channel Stop region depleted or are there free holes?
Can a device simulator like Silvaco help pin these down?
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If not, we will tune them in based on CCD measurements.
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Measured Saturation Effects

As exposure increases, STA3800
shows saturation at ~ 180,000
electrons/pixel.

Total Electrons in Spot (1076 e-)

1Jotal Electrons vs Intensity * Exposure Time
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Exp Time * Monitor Diode (nA-sec)

Electrons not just being
re-distributed, but being lost!
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Modeling Saturation Effects

Phi-Collect Gate

Potentials
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@ At =~ 200,000 electrons, buried

channel disappears.

@ Potential maximum (where
electrons go) contacts the
surface.

@ Subsequent charge is lost,
either through trapping or
recombination at the surface.
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Performance Benchmark

@ NERSC Edison - 1 core

e 3602 grid - grid cell 0.31 p

@ 10,000 electrons

Initialize

Poisson Solution

Calculate E Fields

Trace 10,000 electrons

4 sec.

40 sec.

3 sec.

27 sec.

@ So a B-F run with 256 spots, 3 million electrons ( 300,000 in central spot)
takes about 6 hours.
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Conclusions and Next Steps

@ Conclusions:
e Simulations are reproducing major aspects of B-F measurements:

e Magnitude of slopes.
o Difference between X and Y slopes.
@ Change in slopes with Vbb.

e While there are some free parameters, we should be able to narrow
these down with more knowledge of the CCD and more measurements.

o Use Silvaco to better determine doping profiles?

@ Next Steps
e More measurements and simulations, especially:

@ Improve modeling of saturation effects.
@ One vs Two collecting phases.

o Impact of parallel gate voltages.

o Different spot sizes.

e Get more people using the code:
Latest version (https://github.com/craiglagegit/Poisson_CCD16)
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Back-Up Slides
Description of Numerics



Solving Poisson’s Equation on a Grid

Vio=p
Poijx  (Pirnjx — wijx) = (Pijk — Pic1jx)

0x2 h2
(@i—&-l,j,k‘Hpi—1,j,k+$0i,j+1,k+<Pi,j—1,k+%0i7j,k+1 +<,Di,j,k—1—6*%,j,k) = h2*pi,j,k

1
Pijk = 6*(Soi—i-l,j,k‘HDi—1,j7k+<,01,j+1,k+901,j—1,k+801,j,k+1‘Hpi,j,k—l_hQ*Pi,j,k)

(mt1) _ 1 (n) (n) (n) (n) (n) (n) 2
Piik = g*(‘Pi+1,j,k+‘Pi—1,j,k+‘Pi,j+1,k+‘P1,j—1,k+‘Pi,j,k+1+‘Pi,j,k—1_h *Pij k)

@ Conceptually, we simply iterate until convergence.

@ In practice, it converges very slowly - millions of iterations are
required.
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Restriction

_
Problem at Propagate
fine grid Boundary Conditions
to coarser grid
C— —
Prolongation
Iterate to Propagate Iterate to

solve problem coarse solution solve problem
on finer grid to finer grid on coarse grid

@ Long wavelength modes are determined at the coarse grid.

@ lterations at each finer grid only need to be long enough to determine the

short wavelength modes.
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Multi-Grid Methods to the Rescue - Il

Multi-Grid V-Cycle

Restriction Prolongation

Finest Grid | Cells/Pixel | Grid Spacing | Time (laptop)
1603 16 0.625 micron 5 sec.
3203 32 0.3125 micron 40 sec.
6403 64 0.15625 micron 5 min.

@ Each successive step down is & 8 times faster than the next larger grid.

@ In practice, | iterate the coarsest grid to machine precision, then 2X fewer
iterations at each finer grid, ending with 128 iterations at the finest grid.
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